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FOREWORD

This research was conducted by The Pennsylvania State University for

the National Aeronautics and Space Administration, George C. Marshall
Space Flight Center, Huntsville, Alabama. Dr. George H. Fichtl of the
Aerospace Environment Division, Space Sciences Laboratory, was the
scientific monitor. Professor John A. Dutton, Department’ of Meteorology,
The Pennsylvania State University, was the principal investigator. The
support for this research was provided by Mr. John Enders of the Aviation
Safety Technology Branch, Office of Aeronautics and Space Technology,

NASA Headquarters.

The research reported herein was motivated by the need in the aviation
community for advanced turbulence simulation schemes that provide
simulated turbulence time histories for flight simulation applications
which satisfy not only the known second-order statistics of the atmos-
pheric turbulence as in the state-of-the-art turbulence simulation
schemes now being used by the aviation community, but in addition
include information concerning higher-order statistics as manifest by
the non-Gaussian nature of atmospherlc turbulence. In this context,
it is believed that the work presented herein represents a major

step forward in stochastic process theory as related to atmospheric
turbulence simulation. However, it should be noted that the results
of this report, when used alone, are only applicable to the case in
which an aeronautical system is completely immersed in the gusts;
i.e., absence of gust gradient effects. In this regard, additional
work is under way to develop gust gradient simulation schemes whereby
the gust velocity time histories generated by the technique reported
herein and the gust gradients simulated by the techniques now under
development are applied with a Taylor series expansion (truncated

at the first-order term) of the gust velocity vector field about the
vehicle center of gravity, so that the gust environment at any

point on the vehicle can be generated during a flight simulation.
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SUMMARY

The method of simulating a turbulent time series by filtering a
white noise series is consolidated and extended. The development of
linear filters from empirical spectra is expanded for forms based on
boundary layer similarity under stratification and for generalized
spectral shapes. Some properties of the filters under various stratifi-
cations, heights and viscosities are examined. The method of linear
simulation is extended to multi-component processes by the diagonal-
ization of the spectral matrix, spectral factorization of the
eigenvalues, followed by a rotation involving a specilal unitary trans-
formation. Results indicate that the addition of a cross-response
increases the total response.

The method of simulation by filtering is extended to several non-
linear, non-Gaussian models. These models are based on ad hoc approxi-
mations of the kernel interactions. It is found that the method of
separable kernels for a representation of velocity 1s inappropriate
for simulating the characteristic inertial transfer of turbulent energy.
However, the separable kernel representation of acceleration better
approximates the energy transfer in the viscous subrange for suf-
ficiently small Reynolds number.

An evaluation of the linear and non-linear models, with computa-
tions carried out in phase space, is included. Because the non-linear
simulation method requires a more precisely Gaussian stimulating process
than is commonly available, special generative techniques were developed
and examined. Results indicate that non-~linear simulations will re-

quire large arrays of very nearly white, Gaussian noise in applicatioms.

xiii
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1.0 INTRODUCTION

The Iincreasing sophistication of design techniques in a variety of
engineering and environmental applications requires the simulation of
the statistical structure of wind gusts. As man-made structures have
been made larger and more flexible, it has become imperative that fhe
effects of the wind, both as a static and fluctuating force, be in-~
corporated in structural and economic designs. In addition, in
response to Increasing concern for the quality of the environment, the
need to understand the wind-driven diffusion mechanism distributing
air-borne pollutants through the atmospheric environment has in-
creased. Fortunately, there exists a wealth of information about the
statistical structure of the wind, particularly near the ground. How-
ever, an important difficulty lies in incorporating such information
into applications in a manner that 1s at once practical and realistic
as it conveys important aspects of the meteorological dynamics of the

problem.

l.1 Statement of the Problem

In this study, the method of incorporating the statistical
structure of the turbulent wind field near the ground into applications
is consolidated and expanded.

The linear spectral representation of turbulence has provided a
ugeful interface between the meteorologist and the engineer. Conse-
quently, its properties, successes and failures are well known. The

interest of the meteorologist has been generally centered on providing



the best possible estimates about the structure of the wind field, both
as it relates to the vertical distribution of the averaged wind and to
the spectral distribution of the fluctuating wind.

Models to simulate turbulence which require the specification of
the mean wind with height and thermal stratification vary in their
sophistication and reliance on the principles of boundary layer simi-
larity. As a result, the description of the vertical profile of wind
has tended to be a potpourri of empirical relationships and approxima-
tions. Because the numerous parameters which characterize turbulence
in the atmospheric boundary layer have often not been measured
simultaneously, the applicability of some empirical results is unknown.

Accordingly, there is a need to consolidate aspects of the verti-
cal structure of the wind, in order to have them consistent with known
similarity properties of the flow, and to be able to incorporate fur-
ther results as they become available.

Another crucial feature of simulation models of turbulence near
the ground i8 the approximation used for the spectral distribution of
the variance in the fluctuating components of the wind, particularly,
in the range of scales of size equal to or less than the distance, z,
from the ground. Simulation models which lead to modeled realizations
of the turbulence have required the so-called Dryden spectral form,
which for sufficiently small scales varies as ij’ where k is the wave
number. This spectral form has no basis in theory or observations and
has been chosen only for its analytical properties. Other applications
not requiring modeled realizations have been based on the von Karman

5/3

spectral form which tends to k , for kz >> 1, in accordance with



the well-known properties of the Kolmogorov inertial subrange. However,
the von Karman spectrum requires the specification of a length with
which to characterize the bandwidth of the spectrum, but this length
parameter bears no known dynamical relationship to the structural
properties of the turbulence in the atmospheric boundary layer. As a
result, the implied spectral dynamics of von Kirman's model cannot be
determined by recourse to theoretical considerations of the boundary
layer. The determination of such lengths must of necessity be made
empirically. It remains to determine alternative spectral forms which
are dynamically consistent with, say, the vertical profile of wind

and dissipation determined by similarity arguments.

It is also well known that the concept of a linear representation
of turbulence in terms of a Gaussian, white noise process is inconsis-
tent with the observed non-Gauassian and non-linear structure of the
turbulence. 1In particular, linear Gaussian models are inadequate for
the simulation of the large gust structure. Therefore, an extension
of the representation of turbulence is considered in this study which
systematically incorporates some basic properties of the non-linear
and non-Gaussian probabilistic structure of the turbulence. The
mathematical formulation of this extension is most conveniently based
on a functional series expansion in terms of the simple and convenient
Gaugsian, white noise process -- the same as 18 used in linear modeling.

The method of functional representation will be shown to lead
naturally to a concept of a discrete gust form. As such, the method
of the representation is superior to other discrete gust models where

mathematically convenient, ad hoc forms are specified. Because here
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the discrete gust form is a derived property of the_procesa; a éonsia-
tent formulation.for the statisticgl structure of the:turbuleﬁcé in
the béundarf layer allows for a systeﬁatiﬁ analysis of.thiaﬂg?gcrete
_gust_férm for various thermal stratificafions ﬁpa Reynolds number ef-
fects.

In summary, it 1s the purpose of this study to consolidate the
simulation modeling of turbulence in the boundary layer in ferma of
boundary layer similarity principles and empirical results, and to
extend the modeling for some aspects of the non-linear and non-Gaussian
structure of the turbulence there. It is also the intention of this
work to ildentify some properties of the discrete gust form structure

of the modeled turbulence.

1.2 TImportance of the Problem

The study of the structural effects of turbulence in the earth's
boundary layer divides naturally into three main Qtreams of research
and development (1) the collection and assimilation of turbulence data;
(2) the theoretical modeling of the statistical and dynamical nature
of the turbulence; and (3) the development of methods by which to
specify the response, structural or otherwise, to the turbulence.
While a considerable effort has been made to measure, describe and
model the flow field throughout the planetary boundary layer, the
development of methods of application of this accumulated wealth of
information has not been rapid. ‘

The need for applied models of turbulence near the ground is
ubiquitous. The need is perhaps most severe in the design ana opera-

tion of aircraft and other aerospace vehicles. In aeronautical



,

operations, cross-winds and wind shear may on occasion present a hazard
in the approach and landing stages of a flight. In addition to ques-
tioni of structural integrity and passenger comfort, the principal
concer® of the designer is that the pilot may lose control as the air-
craft ia accelerated, or may aggravate the situation by initiating the
wrong corrective procedure. The control problem is compounded for
VSTOL alrcraft and helicopters whose lift characteristics are more
sensitive to the direction of air flow relative to the lifting surfaces.
More recently, the need has developed to study the response of rockets
to turbulence during launch because the wind fluctuations affect the
stability and navigation of the vehicle.

The concern about wind effects 1s shared by many other engineers.
Turbulent buffeting of surface structures, particularly of large
flexible bridges and office towers, must be considered at the design
stage. Further, the design of surface transportation systems and
vehicles also requires a specification of the range of probabilities
of significant wind events and a method of estimating the response or
result. Of interest, particularly in large urban areas, 18 the effect
of turbulence in the dispersion of pollutants in the atmosphere. Yet
another important area requiring the modeling of the wind field is
that of water wave formation and maintenance, in as much as the wave
environment effects over-water transportation, récreation, and the

dispersion of pollutants in or on the water.

1.3 General Characteristics of Simulation Models

Of course, not all requirements for simulating the statistical

structure of the wind field can be met by developing a particular model.



For example, the methods used to simulate the dynamics of turbulence
(Kraichnan, 1965; Herring, 1966; Deardorff, 1972a), while useful in
testing the consequences of the approximations characterizing each
mbdel, are either not theoretically compatible with the inhomogeneous
structure of turbulence in the atmospheric boundary layer or else are
impractical to implement.

The method found most suitable by engineers for simulating
turbulence is the so-called spectral filtering, or forcing, technique
pioneered by Liepmann (1954). The spectral filtering model essentially
characterizes the response of an aircraft or structure, or any process
driven by turbulence, as a signal derived by filtering a sequence of
pulses uncorrelated sequentially whose amplitudes are derived
probabilistically from a Gaussian distribution. The desirable property
of the latter process 1s the constant spectrum, which, from optics, 1s
referred to as a white spectrum. Because of the wide variety of ap-
lications (Houbolt, 1973), the method remains a useful technique. Its
success to a considerable degree 1s attributable to its simplicity.

The spectral filtering method, as the name implies, is based on the
use bf the spectrum of the atmoespheric turbulence to characterize the
flow field. The characterization of the spectrum over scales important
to the application in turn requires specifying the spectral form as
well as its variance and its bandwidth. Variations exist in the
representation of the spectrum and its controlling variables (Teunissen,
1970), and are discussed in more detail later. The mathematical
details of the method are also postponed for later consideration.

The simulated turbulence resulting from the linear filtering of a

Gaussian process is itself Gausslan. However, turbulence is not a



Gaussian process (Dutton, 1970). In order to produce a nbn—Gau;aian
process which simulates tufbulence from a white, Gaussian process
requires non-linear filters. The introduction of non~linear filtéra to
synthesize turbulence is 'a recent development (Reeves, 1969£ Kufkowski,
et al., 1971; Gerlach, et al., 1973). However, the non-linear models
which have been developed suffer from a lack of consistency_in terms
of the observed, non-linear properties of boundary layer turbulence.
Therefore, what 1s needed is a systematic methodology by which to
introduce the observations of the non-linearity of atmospheric turbu-

lenée into the filtering method.

1.4 Structure of the Atmospheric Boundary Layer

For a steady, horizontally homogeneous mean flow in the boundary
layer, sufficiently near the ground, the vertical variation of the
turbulence fluxes is negligible (Blackadar and Tennekes, 1968);

in particular

w(2)/p, = - uw = u, (1.4.1,)
and

H(z)/p, ¢, = wh = - u, T, (1.4.2)
are independent of height. 1In (1.4.1) and (1.4.2), 'r/po and H(z)/po cp

are the specific momentum and heat fluxes respectively; po is the

density of the air and cp the specific heat at constant pressure.
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Equations (1.4.1) and (1.4.2) also serve as definitions for the
characteristic velocity, u,, and temperature T,. According to the
hypothesis of Monin and Oboukhov (1954) the structure of the meaﬁ wind
shear and temperature gradient (sufficiently near the ground so that
inertial effects due to the earth's rotation are unimportant) can be
derived on the basis of dimensional arguments. That is, the mean

shear and temperature gradient are given by

u

%g.- E£.¢m(z/L) (1.4.3)

and

T

3 - 2 g (2/1) (1.4.4)

where L, the Monin-Oboukhov length, is

(1.4.5)

In (1.4.3) to (1.4.5), U is the mean wind speed, ® the mean
potential temperature, To the depth averaged boundary temperature, K
(a similarity parameter) is von Karman's constant, and ¢ and ¢h are
the similarity functions for the shear and the temperature gradient.

It is convenient in what follows to define z/L by

g = z/L (1.4.6)



In fact, the Monin-Oboukhov hypothesis states that all statistics of
the turbulence sufficiently near the ground, in diabatic situations,
for ideal steady, horizontally homogeneous flows, become functions of
§ only, if velocities are scaled with u,, temperatures by T, and
lengths by kz. Accordingly the moments M:,
h

" turbulence velocity components are also functions

of the probabilistic density
function of the it

of ¢,
n
u = M:(C) (1.4.7)

The spectral distribution, » of variance or covariance over the range

°ij
of wave numbers, Kk, for which there is any shear or buoyantly induced

turbulence, becomes, under the appropriate scaling,

k¢
S_.éi:i - G, (£,7) (1.4.8)
1% J
In (1.4.8), Si represents the appropriate scaling variable, u, or T,

and £, where
f=kzk ' - (1.4.9)

represents a normalized wave number. The use of subscripts 1 through
3 assumes the standard meteorological usage (Lumley and Panofsky,
1964) and the subscript 6 refers to temperature.
For scales, f >> 1, such that the turbulence becomes asymptotically

independent of the details of the mechanisms generating the turbulence
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(Tennekes and Lumley, 1972, Chapter 8), the spectra, Gli are similar,
in the sense of dimensiona: unalysis, under the hypothesis of

Kolmogorov (194l1), so that
-2/3
Gii(f) o, ¢ii(c) £ (1.4.10)
Specifically, for a sufficiently large Reynolds number, defined by
Rey = kz u,/V (1.4.11)

where v is the kinematic viscosity,

b11 = bgp = b33 = 6213 @ (1.4.12)

and

/

-1/3
bgp = 0,@ 0. (@ (1.4.13)

The functions ¢X and ¢€ represent the similarity functions under
Monin-Oboukhov scaling, for the dissipation rates of kinetic energy,

€, and temperature variance, X, and are defined by
¢E(C) - Kze/u*3 (1.4.14)

and

¢x(«:) = nczx/u,.,T,,2 (1.4.15)
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A considerable effort has been made by many investigators to
identify the similarity structure, both of the low order moments
of turbulence near the ground, under diabatic conditions, and of the
spectral and co-spectral forms. An excellent summary and review is
pfovided by several authors in ; monograph edited by Haugen (1973),
and will not be duplicated here. A summary of empirical forms for
¢‘, ¢h’ ¢, ¢x, and M:, as functions of [, are given in Appendix A,

€

as well as empirical spectra and co-spectra, ,» a8 functions of

Gij
¢ and £.

In order to utilize the similarity relationships of Monin and
Oboukhov, it is necessary to estimate the factors u, and T, by an

independent method. For a steady, horizontally homogeneous boundary

layer, Kazanski and Monin (1961l) derived the resistance laws

In(e/fz)) = B + 1n (6/u,) + (& ¢2/u,2 - AHY2 416
and
u,
sin o = - %G—* (1.4.17)

In (1.4.16) and (1.4.17), G is the geostrophic wind modulus and f is
the Coriolis parameter (= 2Q sin ¥ where  is the earth's angular
velocity and § is latitude), o is the angle between the direction of
the surface stress and the geostrophic velocity, and z, is the surface
roughness. The functions, A and B, are similarity functions, which
for diabatic conditions are hypothesized to be universal in the

stability parameter, U given by
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u = h/L (1.4.18)
where h is the so-called Ekman height
h =« u*/f (1.4{;9)

characteristic of the depth of the boundary layer under neutral
stratification. An analogous development by Zilitinkevich and
Chalikov (1968) for the transfer of heat across a turbulent boundary

layer is given by
AB/T, = Polln(u*/f zo) - C(w] (1.4.20)

where A6 is defined as the potential temperature difference between
the surface and the level where the flow is geostrophic, Po is the
turbulent Prandtl number (= 0.7) under near-neutral conditions and C
is a universal function of u. From empirical formulatioms for A(u),
B(u) and C(u), (Kerman, 1974a), it is possible to construct algorithms
for the momentum drag coefficient, u*/G and the 'thermal drag'
coefficient, T*/AO, as functions of the dimensionless parameters, Ro

and Sg, given by
Ro = G/fzo (1.4.21)

and
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5g = 8/T,(46/6Gf) (1.4.22)

Accordingly, u, and T, éan be dérived immediately given the ex-~
ternalf controlling variables of the problem -~ G, Z s and A6.

The combined similarity theories of Monin and Oboukhov and the
resistance laws make it possible to estimate the turbulent statistics
at é given height, z, in the constant flux layer, at a particular loca-
tion and time, having estimated C, z, and A6.

It is emphasized here that éinée the basic meteorological dynamics,
as conveyed by the similarity theories, are self-consistent with the
empirical representations (such as those given in Appendix A), it is
pointless to introduce additional variables through ad hoc models of
the spectra. That is, in models such as von Karman's (Teinissen, 1970,
p. 40) the scaling lengths there are not linked dynamically to
similarity theories. In fact, it is often observed that a form other
than the von Karmian spectral form, may be appropriate for representing
the large scale structure of the spectrum. For these reasons, only
spectra based on direct observations are considered in the models

developed here.
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2.0 FORMULATION OF THE SIMULATION MODEL

-Ih ofdér to extend the methods pf simulating turbulence to
processes with rather general spectral and non—-Gaussian characteristics,
it 18 necessary to develop a suitable mathematical structure, explore
some of its properties, and determine whether its application is
practical. This chapter outlines a particular functional representa-
tion for turbulence that allows for a systematic development based on a
Gaussian process. We also consider here the method of spectral
factorization for calculating a filter for those cases in which a linear
sub-process can be identified.

The concept of a functional representation (Wiener, 1958) of
turbulence arises from a picture of a turbulent velocity field as the
result of random impulses. The process of generating a respomnse to a
stimulus is equivalent to a black-box process. The triplet of input,
black~box. and response are the characteristic elements of a mathe-
matical identify called a system. It is the intent of this research to
consolidate and extend present system representations which use random

pulses to produce a response resembling turbulence.

2.1 Functional Representation of Turbulence

The mathematical formulation used here for analysis of a system is
based on the original work of Volterra (1930). A functional transforma-
tion is defined as the operation which transforms a function to a
number -- an operation such as a definite integral. 1In the application

of functionals to systems, the black-box is modeled by the functional
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transformation which maps the tempofal function representing the evolved
history of the input to the present (single) value of the outﬁut. If
an input function, £(t), as evolved up to time t, is represented as a
point in a space of functions, then the functional transformation maps
the input into a point in a new space of output functions, say, y(t).

As E(t) varies with the parameter, t, then the transformation will map
E(t) to a varying output, y(t). Volterra showed that a continuous
functional (transformation) could be uniquely approximated by a poly-

nomial series of functionals given by

y(t) = K° + J Kl(t;tl) E(t,)de, + r r
2 .
Ko(t3t,8,) E(t)) E(t,) dt, dt,
(2.1.1)

+ rJ r Ks(t;tlpt29t3) E(tl) E(tz) E(ts)

=00 w00 =00

dt1 dt2 dt3 + ...

(All integrals hereafter will have a range (-, ©) unless otherwise
specified.) The functions, Ki, are referred to as the kernels of the
representation. A physically realizable situation, in which the trans-
formation of any signal can act only on the past of an input, requires

that

i,.. - :
K (t,tl,tz,...ti) 0 (t:i > t) (2.1.2)
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For a horizonally homogeneous turbulent flow whose statistics are ad-
vected according to Taylor's hypothesis, the turbulent process is also

temporally invariant, or statlomary, so that
Ki(t't t t,) = Ki(t-t t-t t-t,) (2.1.3)
F ] l’ 2’... 1 1’ 2’.."’ i L] .

In addition to determining the transformation of the input to the
output functions, the kermels also determine the statistics of the
output from those of the input. A simple, linear, temporally invariant

system 18 represented by
y(t) = J K (t-1) E(1) dt | (2.1.4)

For convenience, we take the input to have zero mean (x = 0).

Formation of statistical averages of the input and output leads to

e 1

y(t) y(t+T) = Ryy(r) JJ K (Tl) REE(T+T1+T2) drl drz (2.1.5)
and

—_— 1 —_—

y(t) E(t+t) = Ryg(r) J K (Tl) REE(T-TI) d’l‘l s (2.1.6)
In (2.1.5), the output variance, Ryy’ is represented as a transforma-
tion of the input variance, REE' The utility of using a white-noise

input process, defined by

REE(T) = §(1) (2.1.7)



17

(6 is the Dirac delta function) is shown by substituting (2.1.7) in

' (2 1. 5) and (2.1.6) to form

R, (¥) = j Kl('r.l) Kl('r—.rl) ar, (2.1.8)

!
\

1
Fy;(T) 'FI(T) | o (2.1.9)

Thelkernel, K;, is there%ore derivable by cross-correlating the
input'and output, and the kernels fo; the functional transformation
of the white noise process share variance bfoperties with the output.

It is important to note that while the above technique of
determining the kernel of a linear s&stem is used in many fields of
engineering, here the supposition that both the input pulse and output
response are available for correlation is not valid. The input forcing
ﬁéchanism, as represented by the functional transformation (2.1.1), is
internal to the fluid and not measurable. This makes the problem of
determining the kernels in practice more complicated than the usual
situation where both input and output are available simultaneously.

The significance of (2.1.8) is better seen in a spectral

representation. Consider a Fourier transform defined by

£(t) = 5= I fye Wt gy (2.1.10)
- applied to (2.1.4). The result is given by

;(w) - lzl(w) E(w) (2.1.11)
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which for the white-noise property

1£]% = 1 (2.1.12)

becomes
ly|? = &2 (2.1.13)

Thus the spectrum of the kernel is equal to that of the output for a
linear system. Equation (2.1.13) forms the basis for many of the
applications of the linear simulation of turbulence. A major question
remaining, then, is how to determine Kl, given that its spectrum 1is
that of the turbulence. A recent computational development is
explored in Section 2.4 to determine Kl for a relatively general class
of spectra.

An important consideration in developing a simulation model is the
ease of application. Parente (1970) has outlined the method of treating
interacting systems. In most applications of turbulence models, the
simulated turbulence is used in turn to stimulate a system representing
a structure or perhaps another geophysical process. By the algebra
of functionals (Parente), the final response statistics are derivable
from those of the turbulence without recourse to actually generating
simulated realizations. Of course, such a consideration 1is basic to
linear filtering, but it is useful to note that its application 1is also
valid with non-linear simulations such as discussed in Chapter 5.0.

As ghown by Barrett (1963), the functional expansion of (2.1.1)

can be made more efficient by an orthogonalization of the basis, or
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~ input process, £(t). The question is what process to use for maximum
efficiency. The philosophy of this study is that in cases where the
turbulent process may be considered nearly Gaussian, the obvious basis
'ﬁo use to expand the flow field is one based on orthogonalization
rélative to the Gaussian process -- the Hermite polynomials. Some
questions about the conditions under which such an expression is likely

to be successful are discussed next.

For many years (Batchelor, 1953) the one-point turbulent velocity
probability density function (p.d.f.) was observed to be indistinguish-
able from a Gaussian distribution. Stewart (1951) was the first to
establish the pronounced non-Gaussian structure of turbulence with de-
creasing scale. Further investigations of the moment distributions
over scale (Frenkiel and Klebanoff, 1967) confirm the converse of
Stewart's work —— that there is a quasi-Gaussian structure at scales
commensurate with the energy containing sizes.

Arguments concerning Gaussian structure are not extendable to the
joint p.d.f. of two velocities at neighboring points because of the non-
linear effects (Batchelor, Chapter VIII) which led to an inertial
transfer of energy across wavenumbers. Because non-linear interaétiana
within the turbulence increase with decreasing scale up to the viscous
limit, a resulting increase of non-Gaussian characteristics with de-
creasing scale is to be expected. The probability distribution of the

digsipation rate

€ = 15v (%5)2 (2.2.1)
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for isotropic turbulence (or equivalently local accelerations) is a
;o;venient measure of the non-linear (and non—Gausaihn) ;tructure over
a wide wavenumber region of engineering concern. According to Kolmogorov
(1962), Oboukhov (1962) and Grant et al. (1962), the 'eq'uiubrium struc~
ture implied in Kolmogorov's original similarity result required a
fefinement to a more loéal, volume~averaged dissipation rate, < € >.
It has been suggested (Gurvich and Yaglom, 1967) that < € > has a log-
normal distribution. This prediction h#s been disputed by Tennekes and
Wyngaard (1972) and Gibson and Masiello (1971) on the basis of experi-
mental data taien at a very large Reyholds number. At present, the
only workable hypotheses on the probability structure appear to be
empirical (Tennekes and Wyngaard, 1972; Frenkiel and Kelbanoff, 1967).

| In summary, it is reasonable to attempt a simulation of the energy
containing structure of surface layer turbulence in terms of a quasi-
Gaussian process. The fact that the observed structure of the surface
layer turbulent velocity field is nearly Gaussian (Appendix A), as
expected by the preceding discussion, 18 encouraging for modeling
purposes. However, from the discussions of the strongly non-linear
gpectral region, it is concluded that an expansion about a Gaussian
process at scales much smaller than the:energy generative region is

limited.

2.3 Wiener~Hermite Functional Representation

The orthogonal functional Hermite polynomials based on input
realizations, §(t), drawn from a white, Gaussian, stationary process

are (Barrett, 1963)
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H(E) =1 | (2.3.1)
H, (£,38) = &(t,) (2.3.2)
H,(t,,t,38) = E(t;) E(t,) - &(t;-t,) | (2.3.3)

Hy(t),t,,t58) = E(ty) E(t,)) E(ty) - E(t;) 8(t,-t,)
(2.3.4)

The Wiener-Hermite (hereafter referred to W-H) representation of a
velocity component, u(t), by a white, Gaussian, stationary process is

given by
1
u(t) = J K™ (t-t,) H,(t;) dt;
2
+ “ K (t—tl,t—tz) Hz(tl,tz) dtl dt2 (2.3.5)
3 _
+ ”I K (t-tl,t-—tz,t-ts) Hs(tl,tz,t3) dtl dt:2 dt3 + ...

vhere both input, £(t), and output, u(t), are understood to have a mean
of zero. Amn equivalent representation follows from a Fourier
transformation (2.1.10) of (2.3.5)
;(m) - E;(w) ﬁ (w) + Ez(m w=w, ) ﬁ (W, ;=) dw
1 1’ 1 241’ 1 1

(2.3.6)
+ e
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The orthogonality conditions for the Hermite-polynomials given by

Hb(tl;E) Ho(tz;E) =1 (2.3.7)

H, (t)38) Hy(ty;8) = 6(¢;-t,) (2.3.8)

Hz(tl’tz;g) Hz(t39t4;£) = 6<t1-t3> G(tz-t4)

(2.3.9)
+ 6 (tl-tl’) ) (tz-ts)
or, their Fourier transformed equivalent,
Hl(ml) Hlanz) - Gaufhnz) (2.3.10)
H2(w1’w2) H20»3,w4) = 6(w1ﬁn3) 6(w2+w4)
(2 . 3. 11)

+ 6(w1+w4) 6(w2+w3)

considerably reduce the complexity of computing the output statistics.
For example, by utilizing the orthogonality conditions, the expression

for the spectral density of the u-process, ¢u’ defined by

-

uw) uwy) = 6 @) §(w H,) (2.3.12)

is given by
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12 dw, + ... (2.3.13)

¢, (W) = Il?]'(m)l2 +;rl-j |K2 (w, »0-w 1

1
ﬁquation (2.3.13) expresses the decomposition of the spectrum of the
process into a sequence of positive definite contributions. The
positive definiteness of the W-H representation is a desirable feature
of the method. Not every moment expansion scheme (Ogura, 1963;
Deardorff, 1972b) can guarantee such é property, and in this respect
these other methods contain basic inconsistencies. The implicit
assumption made in using the W~H representation as a representation of
nearly Gaussian process is that the contributions to the spectrum will
tend to concentrate the varlance in the low order terms of (2.3.13),
Because the Hermite polynomials, and hence individual Hermite
functionals of the expansion (2.3.5) and (2.3.6) are orthogonal, the

truncation
K =0 i>2 (2.3.14)

is consistent with the well-known result for linear white, Gaussian

forcing
- 2
o = |k W] (2.3.15)
Successive moment expansions arising from (2.3.5) or (2.3.6) become

progressively more complicated. For example, the skewness (or bi-

spectrum) —— truncated to second order terms is given by
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Vo) N A N A ~ *
u@y) wlwy) u Gophuy) = 41 K Gap) {KHGp) KF Gop,0,)

*
~1 ~1 ~2
+ K (wl) (w1+w2) K (-wl,w1+w2)

*
+ K (""1_’“’1*“’2) K" () K7 () (2.3.16)

*
1 ~2 2 ~2
+ 5 j [K (wl—p,p) K (w1+w2-p,p-w1) K (p,w1+w2-p)

*
~2 2 ~2
+ K (wz-p,P) K (m1+w2-p,p-w2) X (p,wl+w2-p)]}dp + uee

Equation (2.3.16) indicates several other features of the W-H
representation. In general, a description of turbulence with an
infinity of moments is equivalent to a description with an infinity
of kernels. Also higher moments representing the non-Gaussian structure
are characterized by interactions between the Ki, or equivalently among
a hierarchy of non-linearities. It is possible, at least in principle,
to recover one set of statistics from another by solving the (infinite)
set of coupled integral equationms.

Some simplification is obviously needed. The truncation of the W-H
expansion 18 yet another case in which the closure problem of turbulence
must be faced. Attempts to determine the kernels dynamically (Meecham
and Siegel, 1964) have been shown to be inappropriate (Orszag and
Bissonnette, 1967). Attempts to produce the equivalent of a stimulation
technique (George, 1959; Dutton, 1970) and correlate the input and output
are not applicable. The method of Robinson (1967a,b) based on Wiener's

original work as a method of determining the kernels of a linear (or
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equivalent linear) system, by predictive decompdsition is unwieldly
and time consuming.

For a W-H representationvof # neﬁrly Gaussian process, wheré the
non-linearities are weak, it is advantageous to represent higher order
kernels in terms of lower order kernels (Chaﬁter 5.0). The result is
an expansion about linearity, and the determination of the kernels
reduces to calculating just Kl. The next seétion outlines a method of
solving for K; for a generalized class of spectra which is compact

and computationally efficient.

2.4 Spectral Factorization

As a demonstration of the basic features of spectral factorizationm,
consider the first order linear system driven by white noise defined by

the differential equation

d -

2O 4 1t y(e) = £ (2.4.1)
where y(t) is the response to the white noise §(t), and T characterizes
the response time. For convenience, let us scale the problem so that
T = 1. This equation is often employed (for example, Skelton, 1968) to
describe aircraft response to turbulence. The solution of (2.4.1.) is

given by

_tl . C
y(t) = r e E,'(t—tl) de, (2.4.2)
. 0 _
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 The kernel, Kl, is given by e-t, for t > 0. The Fourier transform of

(2.4.1) 18
y(iw-1) = € (2.4.3)
or, from (2.1.11)
Kw) = (u-1)"t (2.4.4)

The spectrum follows from (2.4.4) as

S *
i e

b @ =yy =K K
- ()L (ewt)T (2.4.5)
- ((Ju2+1)'1

The spectral factorization problem is the inverse problem. Given
the spectrum, ¢y, and the fact it was derived from a white, Gaussian
stationary process, find El and Kl. In the above example the spectral
factors, 1+iw and i-iw, are well-known and derivable analytically in
several ways. In fact, applications with this spectrum (often referred
to as a Dryden spectrum) have been made simply to utilize the known
spectral factors and simple form of the kernel (even though it is known
that the turbulence spectrum varies as w-5/3. Such an assumption is

useful because the analytical determination of the factors of other

spectra, such as von Karman's spectrum, is prohibitive.
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Hdwever finding K} from ¢y is not a unique process, as the problem
is stated above. There are an infinity of functions, y(t), which one
could study, either by observation or simulation which would have the

property
yy =K K = (2.4.6)

sl
which is the only defining property of Kl given. It 1s necessary
A ~
therefore to distinguish Kl from any y which has the same spectrum.
As a demonstration of the defining characteristics of K; and K;

consider a simpler problem where the input is a single pulse,

E(t) = &(t) (2.4.7)
From (2.4.2) the output response is

y(&) = k') (e > 0) (2.4.8)

that is, the kernel function is the response for a single pulse. (Con-
sequently, K; is referred to, in what follows, as a kernel or a response
function.) The function, K;(t), of (2.4.8) 1s, from (2.4.2),

t

Ki(e) = e t>0

(2.4.9)
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so that for a pulse (§(t)) at t = 0, the response is instantaneously

.;t its maximum after the.impulse begins. This property is referred to
as the minimum phase or delay charaéteristic, because the modeled physi-
cal system responds with the minimum possible delay to a change in the
input. Physically, of course, a finite delay would be required before
the system achieved its maximum response. It is noted that the modeled
process (2.4.1) is free from frictional effects which intuitively we
would expect to delay the initial response.

The spectral factorization process using the minimum delay criterion
was also shown by Bode and Shannon (1950) to be equivalent to determining
a function with a given modulus (spectrum) with zeroes confined to one
half of the complex plane. The general factorization problem was
golved by Kolmogorov and is discussed in detail by Doob (1953).

In what follows, the development is heuristic. Also, because the
remaining development and computations will necessarily be in discrete,
tabulated form, the formulation is given in an equivalent, discrete
representation. That is, E (dropping the super-script 1 for con-
venience) 18 re-defined as

oo

K{w) = I kt e
t=0

lwt (2.4.10)

where ki is the kernel tabulated over the index t and the summation

limits reflect the condition that

=0 i<0 (2.4.11)
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The phase characteristic, H(w), of the Fourier transform of ﬁhe kernel,

is defined by

¢ Rw) = o2y 1°W | (2.4.12)

~

Consider a Fourier transformation of the logarithm of K, given by

InK= I Lt eﬂ”t
t=0
[ ] o0 (2 . 40 13)
=L + X Lt cos wt +1 I Lt 8in wt
°  tm1 t=1

The one-sided nature of (2.4.13) results from the equivalence of the
physical realizability condition on K (2.4.11) and the lack of poles
in the lower half plane (complex) of frequency (Robinson, 1967a). The

integration (2.4.13) is equivalent to evaluating singularities in the

upper half plane only. The Fourier transform of 1n ¢l/2 is given by
1/2 -
in ¢ =0 +2 I o cos wt (2.4.14)
o t=1 t

where the symmetric nature of the spectrum alters the range of summa-

tion. Accordingly, the coefficients, o, are derived from the inverse

/2

transform of 1n ¢1 ’

m

a, = %17 j cos wt 1n ¢-/2w) dw (2.4.15)

-

From (2.4.15), by forming logarithms of both sides, we have
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A [ @
log K(w) = Lo + I Lt cos wt +1 I Lt sin wt
t=l t=1 .
o (2.4.16)
=0 +2 I o cos wt+ i9(w)
o t
t=1
By equating coefficients in cos wt and sin wt we are led to
Lo =-a (2.4.17)
Lt = Za.t for t > 0 (2.4.18)

The phase O(w) in (2.4.12) essentially selects a function K with no
singularities in the lower half plane. The particular phase relation-

ship is given by

“

-]
O(w) = L Lt sin wt
t=1
(2.4.19)

[~
=2 ¥ o sin wt

t=1 °©
Equation (2.4.19) 1is the essential result of this section. The
analytical problem of spectral factorization is now complete because
the phase characteristic that distinguishes the kernel from any other
function with spectrum ¢ can be computed in terms of the spectrum itself.

This result is clear 1f we substitute (2.4.15) into (2.4.19) to produce

m

[+ <]
O(w) -_TZF Z sin wt J cos W
t=1
0

€ 1n 0% () du, (2.4.20)

1
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The class of spectra to which such an operation will apply depends on

whether the spectrum obeys the Paley-Wiener condition

J In $@) g > (2.4.21)
o (1H007)

This constraint is discussed in Appendix B as it relates to numerical
approximations.

Katzenelson and Gould (1962, 1965) have described a method of ex-
tending the spectral factorization method to the evaluation of non-linear
kernels of a functional representation. Their method involves the
successive minimization of error between a sampled realization and the
output from an nth order representation in order to determine the
optimum n+l kernel. Several hypotheses implicit in their approach are
not valid in the problem here. First, the assumption that there is a
freedom to generate an output realization of turbulence at will, is
not appropriate. Second, the higher order spectra (bispectra, ....)
which are needed in Katzenelson and Gould's method are not yet available
except in very tentative form (Elderkin et al., 1972). Also there is no
guarantee that these_higher order spectra will obey the factorable
properties required by the technique.

We now move to the implementation of the mathematical development.
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3.0 LINEAR REPRESENTATION OF UNI-COMPONENT TURBULENCE

In this chapter, linear models of a single component of turbulence
that are consistent with surface layer similarity are considered and
éxtended to generalized spectral forms using spectral factorization.
Because the response functions or kernels are a relatively novel con-
cept in describing the structure of atmospheric turbulence, it is
interesting to study their form under varying meteorological conditions.
Properties derived from the response function, including measures of the
predictability and memory of the model turbulence also are examined.

The discussion of this chapter will be limited to the vertical velocity
component, partly for convenience and partly because of its importance

in aeronautical response problems.

3.1 Model of the Vertical Velocity

The importance of the vertical velocity spectra, both in modeling
the response of aircraft to turbulence and in studying the vertical
flux of momentum and heat near the earth's surface, is indicated by

the availability of empirical estimates of its spectral form. Busch

and Panofsky (1968) have approximated the w spectra (normalized by u*z)
by a form
Awf
£f G (f) = — = (3.1.1)
v 148, /3

based on data drawn from several sites (f is defined in (1.4.9)). They
note that at low wave numbers, f < 1, their empirical form is an

improvement over that suggested by Pasquill and Butler (1964),



A f
w

£f G (f) = —m————
d (148, £)9/3

(3.1.2)
'Coﬁfifmatidn'df the Busch-Panofsky form is supplied by Kaimal et al.
(i§72)Iba§ed on the Kansas dat#. However, the estimates for (Aw,Bw),
fdf ﬁéuﬁrgl atability,.vafy'betﬁeén_the estimates of Kaimal (1.0,1.5)
and Buéch‘anleanofsky:(115,2.7). The variation in these coefficients
is indicative of the accuracy that can be éxpected in‘eétimating
" characteristics associated withfspécfra, such as vdriance, length
'scale, dissipation, and response functions. All empirical spectra

5/3

behave asymptotically as f , which is characteristic of the

Kolmogorov region (1 << f << fKOL)'

Another spectral form (Appendix A)

2/3 2/3
£ G (f) A % (3.1.3)
G - .1.
v 1+(8._ £)*/3

1s convenient mathematically but does not have the usual front slope
of +1 found by observations. The convenience of (3.1.3) lies in its

form after a transformation of variables

£ . g2/3 (3.1.4)
From the invariance of energy with a change of variables
a £! !
f Gw f Gw (3.1.5)

we are led to
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f'

— (3.1.6)
1+(B; £')

f; G' -

which is a form familiar in filtering problems (Section 2.4) and which

has a well-defined kernel for a linear response to white noise givén by

Kl(x') = exp - x'/Bw' x'>0

(3.1.7)

x' ~ x (3.1.8)

the general form of the response function will be

1/2 2/3

1
K'(x) = Yo exp -(x/B_) H("/Bw) (3.1.9)
where the function H carries the effect of the linear Fourier trans-

formation involved in factoring (3.1.6) to obtain (3.1.9). The

coefficient Y, can be shown to be

- 2/3 _ -2/3
Yw Aw ¢e Bw
— (3.1.10)
-4
m v

The response function of any empirical formulation for w spectra,

to the extent that it approximates (3.1.3), can be expected to vary
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Figure 3.1. Comparison of response function (r = 1 and r = 2/3)
for neutral stability.
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according to (3.1.9). Therefore it is useful to examine:the basic
structure of response functions in (3.1.9) for H= 1.

3.1.1 Analytical Characteristics of Response Structure; The

form of thé'approiiméte analytical kernel is shown in Figure 3.1,
both as a function of scale distance and of stabilify, ﬁﬁere the
parameter 7 is defined in (1.4.6). The variation of le/z(c) and
Bw(c) is based on the empirical relationships of Appendii A and is
given in Figure 3.2. The general feature of the solution for Kl is a
monotonic decrease of the response with distance (in the direction
from which the turbulence is advected). For a given longitudinal
separation x, as the height (and scale length, &) increase, x = x/4
decreases. From Figure 3.1, a decrease in x is equivalent to an in-
creased response. The kernel for separations less than £(x < 1)
decrease faster than exp(- X) but decreases less rapidly than the
response of a simple linear oscillation system for X > 1. That is,
the approximate analytical solution, exp(-iz/s), indicates a decrease
in the response for small lags (relative to %/u,), or equivalently,
indicates that the filter will give less weight to the more immediate
past. On the other hand, the response for large lags will be greater
than that for the common first order linear model.

The effects of stratification on the kernel, also given in
Figure 3.1, are two-fold. First, the initial response (x = 0) varies
with stability, and is a minimum in neutral conditions. Second, the
rate of decay of response decreases with decreasing stability. The

minimum inditial response is a reflection of the minimum in iz at

z = 0 (Figure A.3). The rate of decrease of Kl is deﬁermined by Bw'
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For increasing instability (Figure 3.2), Bw increases #s more energy
is introdﬁcéd at larger £ (Lumley and Panofsky, Chapter 5). Therefore,
from (3.1.9), the response at a given X increases. 7 | |
Another concept which can be demonstrated for the simple
analytical approximation is the memory of the system. Intuitively,
memory may be considered as the integrated effect of past stimuli. For
convenience, it is desirable to compare the memory of the process
representing turbulence with that of a simple linear first order

process with the same variance. Memory 1s defined tentatively as

Mem = {Im Kl(y) dyl} / {Kl(O) jm exp (- y)dy}
0 o

= 11 Im K (y) dy
K(0) 7y

(3.1.12)

It 18 noted that this definition is only useful 1if Kl(O) # 0. For the
kernel (3.1.9), Mem = 1.33, which indicates a net increase in memory
of about 0.33 relative to a simple first order process. For a

slightly different version of the memory concept, given by

1 X 1
Mem(x) = 1 I K (y) dy (3.1.13)
K (0) 0
the memory as a function of distance or time from a stimulus is itself
a function of scale. From Figure 3.1, Mem(x) < 1, for x > 1. Therefore
the increased total memory which is greater than unity (Mem(x) = 1.33),

results from the large scale structure of Kl.
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This coﬁple;eq the discussion of thg_gengral properties of the
approximate analytical strucfure of‘K;. It reﬁains to contrasf this
intuitive and preliminary discussion later with more exact numerical .
solutions for a variety of empirical spectra.

3.1.2 Kernels for Different Empirical Spectra. The spectral

factorization procedure was applied numerically to some of the
empirical spectral representations of Busch and Panofsky, Kaimal
et al., and Pasquill and Butler as well as the spectrum discussed in
Appendix A and Section 3.1.1. The objective was to determiﬁe the
range of response estimates yhich could be expected from variations
in empirical representations of the w spectra. This variability
provides a realistic estimate of accuracy against which to contrast
other sources of variability, such as arise in the parameterization of
the thermal stability. |

The kernel Kl obtained by factorization of some of the empirical
spectra are given in Figure 3.3. Also shown are the results for Kl
arising from the common spectral form used by Busch and Panofsky and
Kaimal et al., but with A.w and Bw altered for compatability with the
variance and Kolmogorov range structure (Appendix A). The final kernel
plotted in Figure 3.3, and termed "model", corresponds to the spectral

form £/ 3(1+BW £)4/3)-1

» with coefficients chosen for compatability
with the variance and inertial range structure.

The response function, as expected, 1s monotonic and similar to
the basic exp(- 22/3) form of Section 3.1.1. It is noted that estimates
of Kl using the Busch-Panofsky formulation differ significantly with

increasing scale from either of the formulations based on the Kansas



{ ] I I—llllr 1 ! ] Ifﬁll ¥ I flllll, H 1 TIII]II 1 1 LI L
s KAIMAL ot al 7
k. -
- — — — — MODEL (APPENDIX A) 7
N - —
- e BUSCH - PANOFSKY ~KAIMAL .
[ . (VARIANCE COMPATIBLE) . :
B ' i
: = -
<
L - ——
] —
O' i 1 11 1.0 11 L 1 L i1 111 )] L L 1 L1 i1 1 i 1 L1 111 i 1 1 [l l_ 111 .
oo .0l 1, 10. . 1000 - | ~ 1000.
f=kQ

Figure 3.4. Comparison of various empirical spectra.

v



42

data. The response based on the Kansas data for x > 1 is not as large
as the kernel derived from the Busch-Panofsky data. The variance
compatible specﬁrum, based on the common mathematical form used by
both Kaimal et al. and Busch and Panofsky, results in a response
structure markedly different from the Busch-Panofsky form alone. It
is concluded that the normalized variance characteristics of the data
set drawn from the Kansas experiment and that used by Busch and
Panofsky differ significantly.

The underlying reasons for this disparity are not clear, but may
be attributed to some degree to the larger roughness characteristic
of the Busch-Panofsky data set, or perhaps a difference in similarity
involving the average structure of the large scale flows (Kerman,
1974b). Whatever the cause of the disparity in the form of K;, the
results indicate that a significant difference exists in the response
representation at scales, x > 1, resulting from various experiments.
From Figure 3.1, the estimated errors between the functional forms
are about equivalent to an error of + 0.25 in an estimate of [. The
numerical estimate of the kernel corresponding to the model spectrum
underestimates the small scale response and overestimates the large
scale response. An examination of the different spectra factored to
produce the response estimates (Figure 3.4) reveals the close rela-
tionship that exists between the relative distributions of varilance
of the spectra and the relative response structures. For spectra
with additional variance at scales, £ < 1, (for example, the analytical
model spectrum) the result is an increased response at scales, x > 1,

and vice versa.
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The objective of this section was to compare and contrast filters
arising from various empirical spectra. In summary, it is concluded
that perceptible differences in the response structure occur according
to the empirical representation of the spectra. These differences in
turn are related to the relative spectral content between empirical
formulation both for the large and small scale regions.

The response structure is next studied as a function of stratifi-
cation.

3.1.3 Stratification Effects on Kernels. As discussed in

Section 3.1.1, the function, K;, could be described by two of its
characteristics -- its initial response at x = 0, and its integral, or
memory. The function K;(O) and its memory is displayed in Figure 3.5
as a function of , for the particular model described in Appendix A.
The calculations in the spectral factorization are performed with 128
points in the Fast Fourler Transform (FFT) algorithm. The response

at x = 0 differs from that of Figure 3.2 because of the approximations
made near fmax (Appendix B).

In Figure 3.5, the initial response increases with |Z| and the
memory increases monotonically with increasing instability. The
response function implied in Figure 3.5 is equivalent to that shown
in Figure 3.1. The response for a given x > 0 is less for stable
stratification than for unstable stratification and a minimum for
neutral stability. The structure of the response function, normalized
by its initial value, also follows from qualitative consideration of
the change in the spectra with stratification. While the variance,

iz (which in (3.1.12) determines the initial response) increases in
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Figure 3.5. 1Initial response and memory for model spectrum.

$



45

both stratifications, the spectral bandwidth, Bw’ (which determines
the decay rate of response) increases monotonically with decreasing
stability. Accordingly, the excitement of more large-scale energy
resulgs in an increased response at scales x > 1.

It follows from the scaling of the spectra that the reeponse
for an arbitrary stability, scaled by its initial response, is only a
function of i/Bw. For a constant flux layer in which the Monin-
Oboukhov length, L, is also constant with height, one may equate
changes in (= z/L) with changes in height. Therefore, for a given
x, i/Bw will decrease with height, both because ;(- x/%) decreases
with height and because B -1 decreaées with height (Figure 3.2).
Therefore, the response will increase as a result of an increase in
~2 with height and a decrease in x/B with height. Under unstable

conditions, Bw increases approximately linearly with height, as does

1/2
v 1/

w , 8o that from (3.1.9), for a given x,

kl(z) ~ z exp(- z2-4/3) (3.1.16)

Under stable conditions, B is approximately constant, while Y 1/2
again varies linearly with height, 80 that for a given x,
Kl(z) ~ z exp(- z-2/3) (3.1.17)

1/2

For neutral conditions, both Yw and Bw are constants in height,

and the response function has a form

-2/3

Kl(z) ~ exp(- z-2/3) (3.1.18)
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Fbrglarge enough z, assuming xz/% is still nearly uhity, the response,
for a given x; will vary linearly wi;h height in stratified cases and
app;oach a constant in neutrai casea; |

' It is concluded that the response structure varies appréciably in
various stratifications. The results for the initial response and
memory, as a function of 7, are intuitively consistent with qualitative
discussions of the spectrum., It is now useful to consider another
effect on the simulated turbulent process -~~~ that of viscosity for low
Reynolds number.

3.1.4 Viscosity Effects on Kernels. The empirical spectra dis-

cussed in the previous sections, were obtained in flows whose Reynolds
number was sufficiently large that the viscous range was well removed
from the energy-containing eddies. Accordingly, the models discussed
there should probably be called 'inertial' but we will refer to them as
inviscid for mnemonic and comparative purposes. It is useful to
consider modifications of the Reynolds number (Re) criterion in order
to study the response structure in the presence of viscosity. This
problem is not germane to the usual application of filters which
simulate the energy containing scales. Rather it is preparatory for
later attempts (Chapter 5.0) to simulate the derivative structure of

the small scale region (f ~ f ).

KOL
The response functions may be considered as the velocity field
that would be produced by a single impulse (Section 2.4)). For
inviscid flows, the response to the stimulus is immediate, giving a
discontinuity at the time oflthe impulse. In a viscous flow, the

formation of such infinite curvatures is impossible, requiring that

response functions rise smoothly to a maximum value.
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The viscous adjustment to the three dimensional kolﬁogorov-
L i : i
spectrum of the inertial subrange is illustrated by the model spectrum

(Pao, 1965)

2/3 ,-5/3

K -1)4/ 3

E(k) = ac exp [~ %a(kn ] (3.1.19)

where n-l is the Kolmogorov.wave number, (€ v'3)1/4. The corresponding

one~dimensional épectrum for the iéotropic region (Batchelor, 1953,

p. 50 is
b33k = o 23 51‘5’ 33,y (3.1.20)
where
3, 0e) =22 fl WEDE? expl- a0 2108 12D
0
and
k, = kpn (3.1.22)
In (3.1.20)
o, = 3 o | (3.1.23)

. { . .
where a is the three-dimensional Kolmogorov constant (= 1.5)). A model
of the spectrum over the entire scale range from energy-containing to

dissipative is therefore given by



48

2/3 _2/3
A.w ¢€ £
£ Gw(f) = —n f)4/3 Jw (f/fKOL) (3.1.24)
W
where (Appendix A)
1/4 _ 3/4
froL = % Re (3.1.25)

For a given [, and fixed ¢e’ the effective cut-off wave number, f

of (3.1.24) varies as Re3/4.

KoL’

The method of digital spectral factorization was applied to
(3.1.24) for ¢ = 0, and several ranges of Re. The response for a given
value of Re rises from an initial zero value, overshoots the inviscid

1 ~
case, reaches a maximum, K max’ at a distance X ox from the origin,

and then settles down to the inviscid solution. The variation of Klma

x
and imax are given in Figure 3.6 as a function of the Reynolds number.
Interpreting the figure, we can see that for a decrease in viscosity,
the maximum response increases and the displacement of the location of
the maximum response from the origin is reduced. For Re = 103, the
resulting form of K1 closely resembles the inviscid result, and the
maximum response of this viscid case and initial response of the
inviscid case are approximately equal. The location of the maximum
response for Re = 103 occurs within a distance, 1/100, from the origin,
or impulse point.

However, for low Reynolds numbers, say, Re 5_102, the effective
loss of variance due to the viscous spectral cut-off (by Jw) is not
reflected in the coefficients Aw and Bw' Accordingly the computations

displayed in Figure 3.6 for Klmax are underestimates for the lower

Reynolds number range.
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Another feature of the viscous response structure (not shown here)
is the convergence of each kernel, irrespective of Re, to the
corresporiding inviscid kernel, for sufficiently large x. The con-
vergence occurs at progressively smaller x with increasing values of Re.
This result is in keeping with the intuitive notion that a decreased
viscosity is felt at progressively smaller scales where large gradients
are possible. Equivalently, as the range of unaffected scales extends
to larger f, the response over a wider scale range becomes indistin-
guishable from the inviscid result.

The concept of memory (3.1.14) does not apply for a viscous model
because KliO) = 0. Therefore, it 1s necessary to consider another
ad hoc normalization, E—i/f rather than the equivalent response of the

common first order linear model. The memory 1is redefined as

Mem = r k' (x) dx / {r (K012 axpl/? (3.1.26)
0 0

Estimates of memory by (3.1.26) are given also in Figure 3.6. Varia-
tion of Re from 101 to 103 results in a 20 percent decrease in the
memory. This result is compatible with the intuitive concept of
decreased memory with increased turbulent scrambling as the viscosity
is reduced. Another aspect of the memory structure of the simulated
process 1s its predictability based on its past history. This aspect
1s examined next.

3.1.5 Predictive Structure of the Model. In the development of

control systems it 1s advantageous to be able to predict the turbulent
velocity field at some future time, on the basis of past observations.

In order to be able to apply some properties of linear stochastic
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processes to the linear, Gaussian model of the vertical velocity
coﬁponent, it is necessary to examine another property of response
functions (Section 2.1). An inverse linear functional, K-l, is

defined by
-1 . -
A PFourier transformation of (3.35) produces an equivalent definition
K@) K1) =1 (3.1.28)

Accordingly, the inverse linear functional is derivable from the kernel,
K, by the method implied in (3.1.27) or (3.1.28). For a perfect system,
without noise, the inverse functional generates a white, Gaussian

process, £, from a shaped spectral process, w, in the manner
E(t) = J K~ 1(T) w(t-T) dT (3.1.29)

Let us consider a prediction of w in terms of its filtered past. The
filter is determined so as to minimize the least squares error between
the prediction and verification (Robinson, 1967b). The linearly

predicted value, wb(t+a), at a time o in the future 1is given by
wp(t+a) - J M(T;a) w(t-T) dT (3.1.30)

For a linear W-H representation of w (Robinson, 1967b), the prediction

kernel, M, is given in terms of K and Kfl by the expression
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M(T;00) = J K(p+a) Kfl(T—p) dp (3.1.31)

From (3.1.27) or (3.1.28), equation (3.1.31) can be considered as a
relationship between M and K.

The inverse filter Kfl computed from the kernel of the spectral
model qf Appendix A, under neutral, inviscid conditions, is given in
Figure 3.7. The physical effect of Kfl is to filter a correlated time
series to produce a white noise process. In Figure 3.7, this decoupling
of the time series 1s accomplished by the alternate oscillating weights
near x = 0 in what amounts to a shredding action. A measure of the
effect of an inverse filter therefore lies in the difference K-l(O) -
Kfl(Ai), where Ax is the resolution for the white noise process which
will be generated. The larger the difference, the more the necessary
shredding action to destroy the turbulent correlations. Accordingly,
for situations with different spectral bandwidth in different thermal
stabilities the oscillations in Kfl near x = 0 will increased for de-
creased stability.

The results for the prediction kernel, M, are given in Figure 3.8
for several values of aAx. The most distinctive feature of the
structure of M is the very rapld decrease in predictive weighting for
even X < 0.25. The implication is that the best estimate (in the least
squares sense) of w at a distance 0Ax ahead is given effectively as a
multiple of its present value. The error of a prediction 0AX units

ahead is given by
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22 (ad%) = | + ad%) - &+ atk|?

_ 1 (3.1.32)
=] - J M(rAx, 0AXx) ﬁz((a+r) Ax) d(rAx)

Intuitively, the rate of growth of error 22, with distance into the
future, is a measure of the predictaﬁility of the turbulent process
‘simulated by the linear representation.

The error of prediction of the model of Appendix A is given in
Figure 3.9. The deterioration of the prediction at even short distances
is apparent. For example, at aAx = 0.5, 22(0.5) ~ 0.6, or T =~ 0.8.
That is, at a distance of about £/2, the root mean square error in
estimating the vertical velocity will be about 80 percent of ;51/2.
For comparison, a test was conducted of the common first order linear
process, with comparable bandwidth. The results are shown also in
Figure 3.9. A comparison of the mean square error 22 of the turbulent

/3) and the common first order model (f_z) indicates

spectral model (f_5
a8 modest improvement in predictability at scales comparable to L. It
18 concluded on the basis of this comparison that modeled turbulence
is the more predictable process. This result is also in agreement with
the discussions in Section 3.1.1 of the memory of the simulated
turbulence.

The basis of the previous discussions is the response function K}
because from it can be derived the memory and predictability char-
acteristics. An empirical formulation for Kl is next summarized for

convenience.

3.1.6 Empirical Formulae for Simulation Model. In Sectiom 3.1.1,

the filter for simulation purposes was represented in the form
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K@ = v, 2 exp-Gi/3 )3 5 (3.1.34)
For the purpose of application of the modei, it is convenient to sum-
marize the forms Yw’ Bﬁ and H.

The factor H(X) was computed from numerical results for K; for

various stabilities, 7, using the following empirical formulae for'Yé

and B
W

le/z = 0.75 (1L + 0.75)z]) (3.1.35)
B, = 0.7 (L +0.75 ¢ + 3.0 z2) (3.1.36)

over the range — 1.5 < § < 0.5. The results from H(x) for the
extremes of the stability range, are shown in Figure 3.10. Apparently,
H is only a weak function of the bandwidth, Bw’ of the spectrum used.
Accordingly, stabllity effects are ignored in approximately H. The
form chosen to represent H empirically is given by

HGZ) = 0.5 (1 + exp[- 2.5 %2/3

D (3.1.37)
The specification (3.1.34) of the first order kernel of the linear,
Gaussian vertical velocity model i1s now complete. The application of
these formulae requires establishing estimates of u, and T, for a given
height, roughness and geostrophic wind speed to denormalize the tabu-~
lated functions. An example using the resistance law formulations

1s given by Kerman (1974a).
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function to model spectrum.
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'3.2 Model of the Vertical Velocity Derivitive

In some applications, such as the simulation of the diffusion of
passive airborne contaminants or the testing of instrument systems to
measure turbulence, it may be advantageous to have a simulation of the
derivative of a velocity component. However, the derivative process
has several distinctive properties which make simulation more difficult.
First, the maximum spectral content of the derivative of a turbulent
velocity component lies in the fine scale, viscous sub-range. Second,
from observations, (for example, Tennekes and Wyngaard, 1972), it
i8 known that the actual turbulent process of the derivative 1is dis-
tinctly non-Gaussian. In this ﬁéction the properties of a Gaussian
derivative process are studied. A somewhat more realistic non-Gaussian
model is presented in Chapter 5.0.

Let the derivative of a linear process, w, be represented in terms

of a white, Gaussian process, E, by

t
2u(t) . J ol (e-1) E(T) 4T (3.2.1)
0

A relationship exists between this representation (3.2.1) and the

representation of the velocity, given by

t
w(t) = f kL (t-T) E(T) dT (3.2.2)
0

which, by application of Leibnitz's rule, can be shown to be

Dl(t) - %; Kl(t:) (3.2.3)
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for Kl(O) = (0, Therefore, it is equivalent to cdmpute D1 direc;ly by
the spectral factorization arising from the representation (3.2.1) or
by differentiation in (3.2.3). From the discussion for the spectrum
near ﬁhe viscous sub-range (Section 3.1.4) the spectrum for the
derivative, is given by

2 2/3 (1/3

Gaw/at(f) = £ Gw(f) = Gwd)e Jw(f/f ) (3.2.4)

KOL
There is no need to include the parameterization of the low wave qumber
range in the spectrum of 3w/dt because the spectral contributions to
the derivative are neglible near 'f = 1. However, the effect of afability
is retained in ¢€ and the viscous effects are parameterized in fKOL’
for a given stability.

The response function for 9w/9t for neutral stability and Re = 10,
is given in Figure 3.11 as well as the corresponding kernel for the w
process. The maximum response, Dlmax’ in the derivative process occurs
at the location of the maximum positive derivative in Kl. The cor-
respondence of D1 and K1 through (3.2.3) is shown clearly. The
extensive region of negative response in Dl corresponds to the
monotonically decreasing form of Kl over the same range. The resulting
estimate of the memory (3.1.26) of the derivative process is signifi-
cantly smaller than the memory of the velocity process. This is
supported by observations that realizations of the derivative of a
stochastic process, are more disorganized than the velocity field.
In Figure 3.12, the maximum response of the derivative process in-

creases with increasing Reynolds number. The location, imax’ of the
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" maximum response converges to the origin in the same manner as Klmax
approaches the inviscid 1limit for large Re in the velocity process.
"However the negative response also increases in width and magnitude
with increasing Re so that the memory continues to decrease. Therefore,
different time or space series of a realization of ow/dot would display
increasing disorder with increasing Re. Qualitatively, however, such
realizations would not display the patchy nature often observed in real
turbulent realizations (Stewart, 1969). An actual turbulent derivative
signal would include more large negative excursions (rapid decelera~
tions) than large positive exguraions and have more large excursions of

any sign than a purely linear Gaussian process. An analysis of these

features 1s given in Chapter 5.0.
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4.0 LINEAR REPRESENTATION OF MULTI-COMPONENT TURBULENCE

The development of the previous chapter assumed that a velocity
or derivative component was uncorrelated with any other component. But
requirements exist, or may be foreseen for simulating the longitudinal
velocity, u, the vertical velocity, w, and the buoyancy, 6, components
of a turbulent flow near the ground. For example, the requirement for
a multi-component model of turbulence for VSTOL response problems has
been outlined by several authors (Case, 1968; Skelton, 1968; Houboult,
1973).

The method which is used to calculate multi~-component filters
involves the reduction of the spectral matrix to an equivalent series
of single component spectra, with subsequent spectral factorizatiom.

The reduction process is discussed next.

4.1 Model Development

Consider a multi-component, linear representation in terms of a
white, Gaussian process for the longitudinal and vertical velocity

components and buoyancy, in the direction of the mean wind speed
(%) = >t Tzt 3!
ui(x) j Kij(x ) Ei(x x') dx (4.1.1)

For later consistency, it is convenient to define a velocity, Uy from

the buoyancy fluctuation

= {8 X2 ¢ 4.1.2
ub To u,’ ( )
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8o that ﬁi is understood to be the array (u, w, ﬁb). The kernel Kij
répresents the response of the :l.th output velocity component to the

j'th

thd lateral velocity component, v, because it is uncorrelated with all

white, Gaussian input component. It is not necééaary to include

other variables and can be simulated independently.
A Fourier transformation of (4.1.1), results in the expression

~

§,(0) = K, (©) £,() (4.1.3)

and the spectral matrix is given by

K.

¢mn(f) - l~1m Gn

(4.1.4)

A A

- Riu Rﬁn

~ A *
Because the process, ¢mn’ is Hermitian (Kij = Kji ), there exists an

equivalent diagonal process such that
1.
d¢p 0 =Q (4.1.5)

where  is diagonal. ¢ is the eigenvector metrix of ¢. (The symbol
represents the adjoint, or transposed complex conjugate of a matrix.)
Because the diagonalization procedure is a linear operation, equation
t4.1.5) applieas at each scale independently. The diagonal elements of
QG») represent an uncorrelated process equivalent to a single-component

spectrum. Therefore, we consider next the spectral factorization of
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each eigenspectrum (or diagonal element of ). The result of the
operation on uncorrelated diagonal elements is itself a diagonél matrix

(of spectral factors), say, A, where

Q= Al (4.1.6)
From (4.1.4) and (4.1.5)

Q= 0K ¢ (4.1.7)
so that

Ay = 0 K (4.1.8)

where Y is an arbitrary unitary matrix. After essentially a trial and

error analysis, it was found that the equivalence

Yy=9 (4.1.9)
preserved the minimum phase characteristics of K. Consequently, from
(4.1.8) and (4.1.9)

A=oOKO

(4.1.10)
or, the eigenvectors, ¢, diagonalize both ¢ and K.
This completes the mathematical development of the multi-component

model. In summary, the procedure is first to reduce a matrix of spectra
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on the other hand, underestimates the w spectrum in the large scale
region but converges to the u spectrum in the inertial sub-range.

The response functions corresponding to the eigenspectrum (termed
eigenresponse for convenience) are similar in form to the single
component model. The multi-component functions derived from the eigen-
response functions by rotation using the eigenvectors (4.1.10) are
displayed in Figure 4.2 The response, Klll’ of u to the first Gaussian
input is similar to the first order respopse function, K1 . The kernel

u
K; 1 has a larger response at small scales (x > 0.5) than a single

1
component model, but a smaller response at larger scales (x > 0.5).
The effect of a downward momentum flux on the vertical component is
to decrease the response for all scales. The response K113 (= K131)
is negligible for small scales and becomes approximately constant

for x > 0.5 Although both the self-responses, K1 and K133, are

11
reduced by the presence of the stress, the total response for
simultaneous, equal and opposite impulses in the input channels will
be larger than if the u and w components were uncorrelated.

The predictability of the multi-component model was also studied.
The mean-square error for the single components and the mean square
error of w for a multi-component simulation are plotted in Figure 4.3
The errors of prediction are significantly different between the u and
w components in single component models. The w component is inherently
less predictable and the lmposition of a cross-correlation makes only
a minor change to Zzw. Equivalently, the prediction functions Mlij
are only slightly different than the single component estimates.

It is concluded that the response for X > 0.1 for a multi-component

mode Iin neutral stratification may be increased by the presence of a
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dbwuward momentum flux. However, predictions based on u and w simul-
taneously'show only marginal improvement over single component models.

4.2.2 Model in Non-Neutral Stratification. The basic u-w model of

Section 4.2.1 was enlarged to include u-0 and w-6 correlations. Co-
spectra involving the lateral, v, component were neglected but the v
spectrum was included. The structure of characteristics of the response,
memory, and predictability for a multi-component model under various
stratifications, 7, are discussed next.

The distribﬁtion of initiallresponse (x = 0) of the eigen-response
functions for various stabilities.-(Figure 4.4) is similar to the single
component response functions.l ng-ranking and indexing of Ai is by
magnitude. The minimum resﬁénse of the eigenstructure is the same as
for the single component w model in neutral stratification. Whereas
the initial responses of the first and second orders are identical,
their memories (Figure 4.5) differ. Accordingly, the order 1 and 2
eigenfunctions represent two distinct processes but with the same
initial response. The eigenmemories increase generally with increasing
instability -- a property shared by single component models.

The transformatién from the eigen-response to the multi-component
response structure by the use of the eigenvectors results in the same
qualitative picture as outlined for the.eigen- and single-component
structure. As before, iﬁitiai resﬁonses are greéter in non-neutral
stratification with all variables, and the memories increasing with
increasing instability. The initial response structure of the v
component is 1dentical to that of the w component because of their

identical inertial sub-range structure.
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EIGEN MEMORY

Figure 4.5.

$

Eigen-memories for four component model as a
function of thermal stability.
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The cross—response Klij(i # ) 1s a measure of the coupling between
the components, u, and uj. The major cross-response functions each
have zero initial response, similar to the result of the previous
sectiof. Another feature of the absqlute value of the cross-response
fqugignq 15_; quimum vg;ue thained at a scale comparable to x = 1.
Tﬁese extreme values for Klls;”K;le aimdlKl36 are plotted in Figure 4.6
as a function of stability. .The response function, K13 represents the
response of uy to 63, or, of ug to Ei;,and therefore the coupling be-
tween u and w. From Figure 4.6, the coupling between u and w decreases
with increasing instability. This result is in accordance with the
results of Wyngaard et al. (1971b) who deduced that the approach to
free convection implies a loss of preferred longitudinal, or x, direction.
Their argument was based on the negligible value of E_g for £ > 1. On
the other hand, the absolute maximum values of the response functiomns,
I(]"1e and K;3e, as seen in Figure 4.6, Increase away from neutral
stability. This represents an increase in coupling in stratified flows,
initially between w and the buoyancy, and subsequently between u and 6.

The effect of thermal stratification on the predictability of the
multi-component flow was also studied. ~ The mean square error of the w
component as a function of thé preéiétion distance 0AX and several values
of stability is shown in Figure 4.7. The predictability of w in neutral
cases was discussed in the previous section. The predictability of w -
increases with thermal instability and decreases with stable conditioms.
It is concluded that the predictability is increased or decreased by

the increase or decrease of low frequency content of the flow under

various stabilities.
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This completes our discussion of linear, Gaussian models and we

now move to a discussion of several non-linear and non-Gaussian models.
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5.0 NON-LINEAR REPRESENTATION OF TURBULENCE

Observations of turbulence in the atmospheric boundary layer, as
reviewed in Section 2.2 and Appendix A, have established that the
veiocity structure of the energy containing region of the.spectrum is
nearly Gaussian. This fact is exploited in this chapter to build a
weakly non~linear model to simulate the low order momeﬁts and spectrum
of surface layer turbulence. The development in terms of W-H functionals
allows for systematically incorporating some characteristics of tur-
bulence, such as its so—-called patchiness. Previous simulations of
the non-Gaussian structure have relied on ad hoc methods (Dutton, 1970;
Reeves, 1969).

The extension of filtering methods to non-linear models is not
without its difficulties, particularly with respect to the implications
about the dynamics of turbulence. Models of turbulence in the energy
containing region and of the derivative structure in the fine scale
spectral region are developed and studied in this chapter. The
derivative model is shown to simulate the transfer of energy towards the
viscous subrange in.a manner similar to a theoretical model of Pao

(1965, 1968).

5.1 Velocity Model

In Section 2.3, the equivalence between the statistical structure
of turbulence in the form of moments of the probability density
function, and in the form of kermels of a functional representation

was examined briefly. Let us pursue this equivalence somewhat further.
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The W-H functional expansion of a (one-dimensional) representation of

velocity is given by
u(x) = K;(x )H (x - x,) dx, + Kz(x X,)
1’ "1 1 1 1’ 72
3
Hz(x - X, X - x2) dx1 dx2 + JJJK (xl, X5 x3) (5.1.1)
H3(x - X5 X = X5, X - x3) dx1 dx2 dx3 + ...
A hierarchy of moments follows from (5.1.1) by forming successive
products between u(x) and u(x + Ax) and averaging in x. The result is

a set of simultaneous integral equations in the kernels, which, for

Ax = 0, is given symbolically by

u2 - J . J KlKl + 2 J . J K2K2 + 6 J . J K3K3 + .. (5.1.2)
(5.1.3)
+3 J . JK2K3K3 +...
o - J . J KRR + 4 J . j K'RKIKS + 6 J . J K'KIRK?
+ j . j k2k2x2k? +j . J - (5.1.4)

+ 6 J . }IK1K2K2K3 + ceen
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In the derivation of (5.1.2) - (5.1.4), the orthogaonality of the
Hermite polynomials, Hi’ with respect to the p.d.f., (Barrett, 1963)
implied in the averaging, hag ;educeq the many cross-products among
the polynomials to simple integer coefficients which indicate the
. multiplicity of products of tye D;rac §-function. A corresponding
r;duction in the order of the integr#tions is also implied in the
symbolism J . J K;Rg.

The hierarchy of moments is infinite both in the number of moments
and thg number of terms in eagh serigs. However, as observations only
exist ép to ;Z (Appendix A) fgrﬁthe.atmospheric boundary layer, the
problem reduces to a finite squgggplgm. Consequences of this method
of closure will be examined in analyzing the results of the model.

The formulation of the resulting finite set of coupled integral
equations (truncated at Ka) is given by (5.1.2) ~ (5.1.4). These
equations are not easlly amenable to solution without further simpli-
cation. A convenient method of approximation which overcomes many of
the computational difficulties associated with the integral equation
structure is an aasumption.tha; higher order kernels are multiples of

the linear kernel, say

]
3 - 1
K (xl....xj) Aj kzl K (xk) (5.1.5)
We shall refer to this approximation as the method of separable kermels.
Equation (5.1.5) is analogous to the turbulent closure schemes in

which higher order statistics are expressed in terms of lower order

statistics. For example, in the classical closure scheme of most
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boundary layer models, the stress is expressed in terms of the shear
of the mean flow. Similar arguments are proposed in the quasi-normal
models of Donaldson (1972) and Deardorff (1972b) for the vertical energy
flux (a triple velocity product) in terms of the local energy (variance)
structure.

Physically, the separability hypothesis (5.1.5), when applied, say,
for K2, implies that the conditional response at the present instant
for an impulse at X5 given a previous impulse at Xys is given by the
response at x; weighted by a multiple, Az, of the respomnse at Xy,
However, the conditiofiing of the response at X by a multiple of the
response at a time, or separation X)=Xy distant, is physically un~

realistic. Instead, the weighting of the impulse as x, would depend

1
more likely on the integrated history of the response from x; up to

Xqy. Accofdingly, a more physically consistent closure scheme for K2
would be
2 1 %1
K (xl, x2) = A2 K (xl) J K (x) dx (5.1.6)
)

This representation will be discussed again in terms of a separable
kernel model for the derivative. There, the concepts leading to

(5.1.6) are shown to be somewhat easier to specify in a phase space
representation. Just as the simple Newtonian stress-shear relation-
ship is often questioned (Lumley, 1970) on the basis of local
representations, the overwhelming practicality and reasonable experi-
mental agreement demand it be retalned in lieu of a workable alternative.

As demonstrated next, the simplicity of local separability (5.1.5)



83

reduces an otherwise unmanageable problem to workable proportions. At

the same time, it is possible by this method to achieve a reasonable

simulation of the moment and spectrai atrﬁcture of the turbulence of

the atmolphéric boundary layer. The separability conditions

Kz = A2 K;Kl

K; - A3 K;KlK;

(5.1.7)

(5.1.8)

are substituted in the truncated moment expansions (5.1.2) to (5.1.4).

The result is

2 2 .4 2
+ ZA2 L + 6A3 L

u2 - I, 6

3 4 3.6 6 8
u = 6A2L + 8A2 L™ + 36 A2A3L + 108 A2A3L

6 6

ut =3 +24 AL + 60 A3 4,8

2L + 60 A2L

where

12 - J [Kl(x)]z dx, 14 - (Lz)z,....

The utility of the assumption of local separability is now clear.

(5.1.9)

(5.1.10)

(5.1.11)

(5.1.12)

The

problem has been reduced from a problem in simultaneous integral

equations to a problem in simultameous algebraic equations.

Further,

the expansion is in terms of Lz, which from (5.1.9) can be seen to be
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the linear contribution to the variance. Therefore, for a weakly non-
linear functional representatin of a weakly non-Gaussian process, the
moment expansions are perturbatibns about the linear, Gaussian process.
Further, it is reasonable to describe such a representation as a
quasi—iiﬁéﬁr modéi. | o - | N |

A similar expansion for the spectrum arises from the separability

conditions,
o1 2 2 1 2 %1 2
o(E) = R (E)|© + 24, J Ik (fl)l |k (£ - fl)l df,

2 ~1 2 |01 2
+ 647 JI | (fl)! :|K (£,) |

3

- f2)|2 af, df, . (5.1.13)

~1
|k (£ - £ 1 9%,

1
The spectrum is then also expanded in the linear contribution to the
spectrum, |£1|2.

The distribution of the moments (variance, skewness and kurtosis)
of velocity and buoyancy, as a function of thermal stability, §, are
described in Appendix A. The data are drawn from the Kansas experiment.
The solution for L2, A2 and A3 from (5.1.9) to (5.1.11) will therefore
also be a function of stability. For convenience, the model is re-
stricted fo a non—Gaussi;n extension for'the'vertical velocity component.

Equations (5.1.9) to (5.1.11) were solved by iteration. The results
for the contributions to the variance, skewness and kurtosis for
various thermal stabilities are given in Figures 5.1 to 5.3.

In Figure 5.1, the linear contribution, Lz,.is the principal source
4 2 .6

of variance. The non-linear contributions (2A§ L’ and 6A3 L") increase
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SKEWNESS CONTRIBUTIONS
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Partition of skewness of vertical velocity for a
cubic, separable model.
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Partition of kurtosis of vertical velocity for a
cubic, separable model.
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monotonically with &ecreasing thermal stability. The cubic conéribution
to the variance exceeds the quadratic portion. In Figure 5.2, for the
partitioning of the skewnesg, the_major contributor at all_; ;s‘f;pﬁ
the ﬁerm 6A2L4. The term 36A2A3L6 becomes only an appreéiaﬁle fraqcion
of the total skewness for [ = 1. However, in the contributions to the
kurtosis (Figure 5.3), the cubic term, 24A3L6, dominates the qu#draéic
term 60A§L6. | |

In summary, the major contributién to the (non-zero) skewness
involves a term linear in Az, as shown in Figure 5.2, and the deviation
of the kurtosis from a Gaussian representation is accounted for by a
term quadratic in A3, as shown in Figure 5.3. However, the major non-
linear contribution to the variance (Figure 5.1) occurs from the third
order effect in A3 rather than a quadratic effect in Az. Alternatively,
the distribution of variance 18 not monotonic with the order of the
kernel. This effect has been reported and examined by Crow and Canavan
(1970).

The spectral partition of variance (5.1.13) resulting from an
iterative solution using the values of Lz, Az and A3 for neutral
stability is presented in Figure 5.4. Both the quadratic and cubic
contributions increase with decreasing scale. The increased effect of
non-linearities with increasing f is qualitatively consistent with the
results of Stewart (1951) and Frenkiel and Klebanoff (1967). From .
dynamical considerations, it is expected that non-linear effects are
dominant in the inertial.sub-range, say £ ~ 10. Héwever, the largesf
relative contribution to the variance (non-linear/linear) at f = 10_

is only about 0.25. Although this ratio increases with stable

stratification, its maximum value under any stratification is only 0.5.
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Therefore, there are indications that the dynamical structure of the

model is not represented properly. This point is examined further in

a later discussion.

In Chapter 3.0, the concept of memory, for a linear system, was

defined by

Mem = Jw x.1<x)dx/J°° o 12axt? . (5.1.14)
(o]

o

An alternate concept for memory, based on (5.1.14) is the limiting

response as x *> « of the system to a step function at x = 0, that is,

1
R |

E(x) = 1 (x > 0) (5.1.15)
=0 (x < 0) (5.1.16)

The normalization by I[Kl(x)]zdx simply redefines the system as one
having an output with unit variance. It 1is natural to extend this

alternate concept of memory to a non-linear system. The resulting

definition of memory is given by
2 3,, 2
Mem = {Mem, + A,(Mem,)” + A,(Mem,)"}/u (5.1.17)

where

Mem, = r kL (x)dx (5.1.18)

o
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In (5.1.17)

w =124 2A§(L2)2 + 6A§(L2)3 (5.1.19)

Equation (5.1.17) is consistent with previous decompositions because
the totalimemory is itself expanded in terms of its corresponding linear
contribution, Mbml.

The decomposition of the memory for the non-linear representation
of the w process, using the solution for Lz, A2 and A3, is presented in
Figure 5.5. The linear memory contribution, Meml (defined in (5.1.18))
is less than that for a totally linear representation. The loss of
linear memory follows from Figure 5.4 for the spectral distribution of
linear variance. Because the ratio of non-linear variance increases
with £, the contribution to Kl near X = 0 must be less for a non-linear
model than a linear representation. Accordingly, the linear memory is
reduced. The linear contribution, Meml, represents more of the total
memory in stable stratification than in unstable stratifications. This
trend is consistent with previous results for the increasing effect of
the non-linear aspects of the functional representation for decreasing
z. In Figure 5.5, the relative contributions of variance in the quad-
ratic and cubic terms is also reflected in the relative contributions
of the cubic and quadratic terms of the total memory.

The response function, K;, of a non-linear representation departs
most from the corresponding function of a linear representation x = O.
The non-linear memory changes are exaggerated by the squaring and cubing
operations in (5.1.17). For initial responses greater than unity, (such

as occur for § < 0) the result is an increase in the contributions to
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Figure 5.5. Partition of memory of vertical velocity for a
cubic, separable model and a comparison with
linear model.
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the non-linear memory components at the expense of the linear component.
Conversely, for initial responses less than unity, (as for the stably
stratified region, ¢ > 0), the effect of squaring and cubing the linear
memory contribution is to reduce the non-linear memory contributions
relative to the linear part. Both of these conclusions are consistent
with the relative distributions of memory in Figure 5.5.

An energy cascade by interactions among wave numbers is an important
characteristic of turbulent flows with a large Reynolds number. There-
fore, it 1s interesting to estimate the inertial transfer of energy
arising from the non-linear term of the equation of motion (udu/9x) for
the simulated one-dimensional process. First, let us consider the

Fourier transform of the inertial term. The result is
f ~ .~ ~
Tr(f) = - 5= Im {u*(f) J{u(fl) u(f - fl) dfl} (5.1.20)

where Im{} represents the imaginary part of a complex argument. For
the W-H expansion of u, given by (2.3.6), the expected value of

(5.1.20) becomes

To(f) = - f—3 In{K (-£) j L (-p) K2(£,p) dp
nw

1 I\z ~ A
-5 | ¥, £-p) K'(-p) K (p-£) dp
(5.1.21)

+-,1;I K (p, £-p) j K3 (-p, 1) K (-r, p-f) dr dp

+ vues }
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Further, the separability condition, (5.1.7) reduces (5.1.21) to

o - -Lwwfo? [ Kol e
T

- éﬁ I 1K ) | |kE e - p) |2 ap (5.1.22)
A 3 ~ ~ A

+ 2 Il|1<1(_p)|2 Ik s - p)|? J Ik ) |2
dr dp + ...}

An inspection of (5.1.22) reveals that the terms bracketed by {} are
all real. Therefore, Tr is given as the imaginary part of a real num-

ber, and consequently
Tr(f) = 0 (5.1.23)

Accordingly, there is no transfer of energy at all by the separable
kernel model of velocity. 1In its present form, the quasi-linear model
i8 dynamically inconsistent with known characteristics of turbulent
flow.

In order to have a non~trivial transfer of‘energy, it is necessary
to have an imaginary part to the terms bracketed by {} in the right
hand side of (5.1.21). The fact that the separable kernel model has
only a real part stems from the lack of phasing between the Fourier
transforms of the kernels. The interactions between kernels have been
shown by Crow and Canavan (1970) to be the equivalent mechanism for

transfering energy as the interactions between velocity components at
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different wave numbergs. These authors also demonstrated that the W~-H
functional representation is handicapped by a need to include very
many kernel interactions to simulate the interacti;ns of ; over wave
number space. Therefore, the quasi-linear model for velocity shares
the dynamical shortcomings of W-H functional representations that are
significantly more sophisticated.

However, the redeeming feature of the separable kernel method is
that it leads to a faithful reproduction of the low order statistiéll
structure of observed data. We next examine a model for the derivative

of the longitudinal velocity component which better represents the

dynamics of energy transfer.

5.2 Derivative Model

In earlier discussions (Section 2.2), it was noted that the small
scale (f >> 1) structure of the derivative of velocity in isotropic
turbulence was distinctly non—-Gaussian, and that the dynamical process
at such stales was distinctly non-linear. The results for the non-
linear velotity model of the previous section indicate that a simulation
of the dynamics of turbulence with a truncated set of kernels, even for
a weakly non~Gaussian situation, requires a more sophisticated closure
scheme. We now demonstrate that the method of separable kernels applied
to a model of the derivative of longitudinal velocity, for a modest
range of Reynolds number, results in a plausible dynamical anélogy.

Consider the W-H functionai expansion of a derivative of the

longitudinal vélocity in the mean wind direction
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%ﬁv- d(x) = I nlnl + IJ p? Hy + .o . (5.2.1)

The relationship of the moments of (5.2.1) in relationship to the
kernels, Dl, is similar to that given in (5.1.2) to (5.1.4). In the

same abbreviated notation, the interrelationships are
a? - J . I p'pl + 2 I . I p%p? + 6 I . J 03 + ... (5.2.2)

d3 =3 I . J DlDlD2 + J d J D2D2D2 + 3 J ¢ J D2D3D3

(5.2.3)
+".
a* - I . J p'plnln! + 4 j . I plololp? + 6 J . J
D1D1D2D2 + J . j DZDZDZD2 + J . J D1D1D3D3 (5.2.4)

+ 6 I . J D]'DZDZD3

where the orthogonality of the Hermite polynomials has determined the
integer coefficients. Again, in analogy with the non-linear velocity
model, it is convenient to assume that the kernels of the derivative
process are separable,

i

T Dl(x

o2 j) (5.2.5)

1
D (xlg...xi) Ai

The coefficients Ai correspond to the coefficients Ai of the velocity
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model. The result of substituting (5.2.5) in (5.2.2) to (5.2.4) is a

set of algebraic equations

a% =224 2A§ 2 re A§ 2l - ' (5.2.6)
3 4 3 6 6 8
a® =60, 3 + 8] € +36 8, 8,2% + 108 8, 4,2
(5.2.7)
+...
d* = 0% + 24 A, 2% + 60 Ai 28 + 60 Ag N (5.2.8)

where Az is the linear contribution to the variance of the derivative

given by

A2 = J ' 0 1? ax (5.2.9)

The structure of moments for the derivative, up to ;Z’ are drawn
from results reported by Wyngaard and Tennekes (1970). Their results
for the skewness and kurtosis for the longitudinal velocity component
form a convenient basis. for a truncated representation similar to that
given in Section 5.1. Based on the log-normal probability density
function for a derivative process (Gurvich and Yaglom, 1967), and
Kolmogorov's (1962) hypothesis concerning the probabilistic structure
of the local dissipation, Wyngaard and Tennekes found from some
empirical data that |

ti.’i
— —5— 3/2 3/16
a3/ %) --c R, (5.2.10)
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1/2 (5.2.11)

b, 2.2
d’/(@)" = c, RT
where RT is Reynblds number based on the Taylor microscale. Examination

of Figures 5 and 6 of the paper of Wyngaard and Tennekes lead to the

empirical estimates
c, = 0.16 (5.2.12)
c, = 0.40 (5.2.13)

Further, the Taylor microscale, AT’ can be related to the generative
scale length, %, for turbulence in local balance between generation

and dissipation (Tennekes and Lumley, 1972, p. 67)

2 Re 1/2
X T3 (5.2.14)

and consequently

1/2

RT = (15 Re) (5.2.15)

In terms of the Reynolds number of the generative region, Re, the

skewness and kurtosis of the derivative become

a3/%)3/2 o = 0.21 re¥/3? (5.2.16)

a*/@H? = 0.79 rel’4 (5.2.17)
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Wyngaard and Tennekes pointed out that dependence of the skewness
and kurtosis on the Reynolds number violates the original hypothesis
of Kolmogorov. However, the dependence on Re is rather weak because
of the\smallness of the exponents, 3/32 and 1/4. To be consistent with
the formulation leading to (5.2.16) and (5.2.17), it {is necessary to
re-interpret the dissipation in terms of a locally averaged estimate
(Rolmogorov, 1962; Oboukhov, 1962).

The estimates (5.2.16) and (5.2.17) for a given value of Re were
substituted in (5.2.6) to (5.2.8), and the equations solved for AZ, Az,
and A3 by iteration. The model must be restricted to neutral stability
because there 1s no available info;ygtion on the distribution of the u-
derivative skewness and kurtosis wiéh stability. Table 5.1 summarizes
the distribution of variance, skewness, and kurtosis for various Re.

For Re > 104, the iterative method of solution of the non-linear
algebraic equations, (5.2.6) to (5.2.8), did not converge. The skew~-
ness and kurtosis estimates according to (5.2.16) and (5.2.17) 1imposed
by truncated of the moments to a finite number in order to represent a
process with a large Reynolds number (>103) is not uniformly valid.
Also, inspection of Table 5.1 indicates that the non-linear contribution
to the kurtosis (24 A3A6) is negative for Re 5_102. Because only
positive values of kurtosis, like variance, have physical significance,
this result is indicative of an unrealistic interaction among the ker-
nels remaining after truncation. However, for a range of Re between 103
and 104, where the model does not radically depart from a Gaussian model,

the solution for Az and A2 and A3 appears to be successful.

An empirical form



Table 5.1

Partition of variance, skewness and kurtosis of u - derivative

Variance

Skewness Kurtosis
- 2 2.2 2.6 4 3,6 6 6 6 2.6
”10310 Re A ZAZA 6A3X 6A2k SAZA 36A2A3k 3A 24A3A . GOAZA
1 .958 012 .030 -.443 .000 .191 2.64 -1.58 «342
2 .987 .008 . 004 -.377 -.002 .062 2.89 -0.64 .240
3 . 966 . 005 .029 -.276 . 000 -.117 2.71

1.59 .131

00T
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a g/3
u

) B ————— (5.2.18)
Du(f) 17 (Bu ) 4/3 L(£)
was chosen for the spectrum of the u - derivative. L is the one dimen-

sionalp similarity solution (Pao, 1965) for the viscous subrange, given

by

2/3 3 4/3

1 ~
L(f) = [0 a - eHe*? exp 1- 3 ater0*?) (5.2.19)

where

£ = £ Re /4 (5.2.20)
for neutral stability. The coefficients Au and Bu in (5.2.18) were
calculated according to the variance and dissipation compatibility
conditions (Appendix A).
The linear contribution to the spectrum of the derivative is given
in Figure 5.6 for several values of Re. The effect of the viscous
tail does not become significant in the case of Re = 103 until £ = 350
which 18 considerably smaller than the scales of interest for the majority
of engineering applications. However, the maximum values of Re and f
of the model are underestimates of the respective atmospheric values. In
Figure 5.6, there is an incrgase in the variance of the derivative at
smaller scales with an increase in Re. .The increase in the variance is
itself felt in the increase in the response at smaller scales (Table 5.2).
The structure of the response function, Di(i), is given in Figure 5.7
2

for Re = 10" and £ = 0. The response functions for a total linear

representation of 3u/dx and the linear and non-linear representation of
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Table 5.2

Magnitude and lbéation of the maximum responsé

and linear contribution to the memory.of u - derivative model

log10 Re D max X ox Mieml
1 0.25 0.20 0.824
2 2.8 0.027 0.0

u are also presented. The maxl;um response for the u - derivative
process occurs at large separation and is less than the maximum response
for the linear process. The reason for changes in the non-linear
structure relative to the linear were discussed in Section 5.1 in re-
lation to the non-linear velocity model. The increase 6f the ratio of
non-linear to linear varlance with decreasing scale, for a given total
spectral content, is associated with the reduction in the linear response
at small separations, say x < 0.5.

In the previous sectlion, we discussed the lack of dynamical
consistency for a separable model of the non-linear, non-Gaussian
representation of velocity. The lack cof phase interactions among the
Fourier transform of the response functions,lii, resulted in a lack of
energy transfer inertially. Therefore, we examine the inertial transfer

properties of a separable W-H representation for the derivative for its

phase and energy transfer properties. A series of equations for the
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interrélationships between the kernels K? and Di follow from the W-H
expansions for the velocity (5.1.1) and the derivative (5.2.1) when

each expansion is substituted in the identity

x
cu(x) = I %ﬁr dx' (5.2.21)

-00

Terms of the expansion are gathered in like orders of the (orthogonal)
Hermite polynomials. For the separable derivative model, the inter-

relationships become

1 °© 1
K (xl) = J D™ (y + xl) dy (5.2.22)
Rx .x) = &, | ity + %) Doy + x.) d (5.2.23)
X, s, 2 y +x y + x,) dy .2,

The relationship (5.2.23) between the kernels Ki of the corresponding
velocity model differs from the model of Section 5.1. In particular
K2 (x,,x,) ¥ A, K'(x,) Kr(x,) (5.2.24)
1’72 2 1 2 cer
where A2 18 a constant.
A procedufe similar to that used in (5.1.1) and (5.2.1), but using
Fourier transformed equivalents, results in a sequence of expressions

between_Di and K; glven by
1 £ KNE) = DY (£)) | (5.2.25)
1 1 1 ) " *

22 72
i (f1 + fz) K (fl,fz) = D (fl’fz) | (5.2.26)
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Substitution of the Fourier transform equivalent of the separability

of the derivative process (5.2.5) leads to an expression for Dz'in terms
of D1 given by
2

D% (£,£,) = A pt £, pt (£,) (5.2.27)

2
Finally, the combination of (5.2.25), (5.2.26) and (5.2.27) results in
a succinct statement of the kernel interaction structure of the cor-
responding velocity model

1 £ £

L2
) (fl TrE, K" (£) K (£)) (5.5.28)

A2'
K (fl’fz) = A
From (5.1.21), the energy transfer for the separable derivative model

becomes

Tr(f) = :§ A, Im {1 f|K1(f)|2 J o+ |K (p)|

Ui
(5.2.29)

= J (£ - p) [K e - 2 |? |KMCE - ) |? ap)

An additional term involving a triple product of §2 (and hence Az) has

been neglected in (5.2.29). The expression in (5.2.29) in the brackets
{} is purely imaginary in contrast to (5.1.21). Therefore, the energy

cascade is non-trivial for a separable derivative model in contrast to

that for a separable velocity model. For convenience, we simplify

the notation by introducing a function for the common term f]Kllz,

AE) = |2 (5.2.30)
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Equation (5.2.29) reduces to

£A
Te(f) = —3—2 IACE) j g—if.ﬂl dp - -;—f- J A()A(E~p) dp}  (5.2.31)
it

Computationally, (5.2.31) is evaluated from estimates of A based on
(5.2.30) and (5.2.25).
Estimates of £ Tr(f) derived from (5.2.31) are displayed in
Figure 5.8 for Re = 102. The transfer of energy is confined to the
viscous region, with negligible energy transfer in the range 100<f<101.
For comparison, we have indicated the theoretical prediction of the
transfer function arising in the mod;i of Pao (1965, 1968) for isotropic

turbulence. Pac models the energy transfer as a convergence of spectral

flux, S(f), given by
S(f) =€, exp - 3/2 a (f/fROL)4/3 (5.2.32)

where

Te() = 32 5(6) (5.2.33)
The curve for Tr shown in Figure 5.8 represents a one-dimensional
energy transfer estimate derived from (5.2.23) based on the assumption
of isotropic energy transfer (Batchelor, 1953, p. 50). The agreement
is gratifying although the Pao model contains a wider inertial sub-
range of nearly zero energy transfer than does the separable derivative

model. 2
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The lack of energy transfer in the generative region (not sﬁqwn) is
in serious diga
(Lumley and Tennekes, 1970, p. 271). It remains an unresolved problem
to devslop a model based on a W~H representation which will adequately
reproduce the spectral flux convergence of the generative region.

In summary, it is concluded that for a realistically large Reynolds

3

number range (10 <Re<104) the derivative model adequately represents

the low order moment structure and the inertial p
component of turbulence in the viscous subrange. For some applications
such as those involved with systems response at scales comparable to the
viscous subrange, the derivative model, as described above, may be
sufficient. But for problems involving eddies with dimensions of the
order of the energy containing eddies, neither the velocity nor the
derivative models adequately represent the non-linear features of that
region as manifested in a spectral transfer of energy.

We now move to an application and evaluation of the simulation of

realizations of turbulence by some of the linear and non-linear models

discussed in Chapters 3.0, 4.0, and 5.0.
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6.0 DEMONSTRATION AND EVALUATION OF MODELS

The development of Chapters 3.0, 4.0, and 5.0 has concentrated on
the.calculation of the response functions from given statistical data.
The linear filter is derived from a predetermined spectral form whereas
the non-linear filters of Chapter 5.0 require additional empirical data
in the form of third and fourth moments. It is the purpose of this
chapter to briefly describe the implementation of the results derived
in the previous chapters for the simulation of turbulence. The dis-
cussion is limited to linear gnd non-linear models of a single velocity

component.

6.1 Generation of White, Gaussian Series

Standard computer sub-routines exist for the generation of randomly
ordered, Gaussién series. Thg difficulty with using these randﬁm
number generators lies in thelr small but significant deivations from
a Gausslan distribution for moments of order greater than 2. The
white spectrum condition is improved iteratively by several random order
shufflings of the input series.

The problem of non-Gaussianity was overcome by generating random
values from the cumulative probability density function of a Gaussian
process. For a Gaussian process with mean 0 and variance 1, the

probability, p, that a sampled value, s, will be less than x,
P = Pr(s < x) (6.1.1)

is given by
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p = erf(x) (6.1.2) .

The range of p 18 [0,1] for a domain of x (-w,©), Conversely, the .
Gaussian distributed variable x, which occurs with probability p is

given by
x = erf 1(p) (6.1.3)

The generation of N values of x from (6.1.3) was achieved for an equi-
spaced partition of the range of probability, p, into N increments. The
limit of accuracy of the routine for the inverse error function
(Abramowitz and Stegun, 1964) of 5 10-5 for single precision compu-~
tations limits the length of generatea time series to about 2 104 points.
Conversely, because the approximation.to Gaussian moments of order
greater than 2 becomes increasingly dépendent on several rare large
deviations, it is necessary to generate a minimum number of points to
achieve approximate Gaussianity in the higher moments. The minimum
then depends on the degree of accuracy desired in the moments of the
filtered series. The conditions on the length of the series are less
stringent for linear simulations because of a lack of interaction

among moments.

6.2 Linear Model Test

Several methods are available for the evaluation of the trans-

formation

y(t) = j 1(1(1') E(t - 1) dt (6.2.1)



112

where Kl is the filter and £ and y are the white and filtered series
respectively. The direct evaluation of (6.2.1) by either a discrete
analog or a quadrature scheme results in an additional shaping of the
input spectrum in addition to the filtering by |§1|2. Therefore, it is
-advantageous to utilize the Fourier transform equivalent of (6.2.1),

given by

y@ = K@) EW (6.2.2)
The evaluation of ﬁl in (6.2.2) may be made in either of several ways.
The first method is the direct evaluation of ﬁ; from K. However, this
method was found to be inexact in specifying the low frequency (wave
number) spectral content. This error in filtering the large scales
arigses from the recursion involved in’'estimating the Laguerre coefficients
(Appendix B). A second method which is more exact involves by-passing
the redunant step of computing Kl and its Fourler transform. The
method of spectral factorization (Chapter 2.0 and Appendix B) results
in an exact estimate of El directly from the given input spectrum.
However, in order to accommodate the fast Fourier transform techniques
it is necessary to interpolate the estimate of ﬁl, or more correctly,
its regularized spectral equivalent to equal increments of w (or f).
As a result of the spectral factorization El is tabulated at equal

increments of u where

w = tan u/2 . (6.2.3)
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~

The procedure used to estimate_Kl(w)_was to interpolétetthe regularized
spectral factors for the u derived from the inverse of (6.2.3) and then

to transform the w-space using the relationship (Rino, 1970)

KW = s@ 272 @+ expl-1u) ™ (6.2.4)

where ; and n are éefined in Appendix B. The interpolation scheme used
to interpolate ; wéa a third-order spline function routine. The success
of this second method 18 guaranteed by the fact that the regularized
spectral density functions are smoqtb, slowly varying functions of
scale.

The combined error of spectral factorization to estimate ; and its
interpolation to estimate ﬁ; was found by computations to be less than
10-'3 of the modulus at a given. scale. Therefore in estimating a
spectrum the only discernible disparity between an input spectrum of
turbulence and its simulation lies in the deviation of the white noise
spectrum from unity or in its statistical variability. This non-
whiteness can be eliminated in, spectral comparisons by normalization
of the output spectrum by the input spectrum. Figure 6.1 presents a
comparison of the empirical and simulated spectra of vertical velocity
for a total length of simulation equivalent to about 103 integral
scales. The empirical form chosen for the spectrum of w is discussed
in Chapter 3.0 and Appendix A. It can be seen from Figure 6.1 that the
Kolmogorov spectral form for f >> 1 has been faithfully reproduced. It

18 concluded that within the extremes of statistical variability ex-

pected in a single finite length of record, the spectrum of the
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siﬁulated turbulence normalized by the sample white spectrum is identical
to the prescribed, empirical spectrum.
This completes the demonstration of the linear filtering method,

and we turn to an evaluation of a non-linear model.

6.3 Non-Linear Model Test

The specification of a white Gaussian input for stimulation is
more critical for a non-linear simulation. Deviations from a white,
Gaussian input process result in spurious correlations between the
kernels of different orders. For example, in Section 5.1, if the
input was non-white. or non-Gaussian, the moment expansions developed
there would contain various correlation functions of the input process
in place of the integer coefficients. In particular, for an input

series, h(t), with correlation functions

Rz(T) = h(t) h(t + 1) (6.3.1)
R3(‘I.‘1 12) = h(t) h(t + 'rl) h(t + 'rz) (6.3.2)
R4 (rl, Tys 13) - ..., (6.3.3)

the variance expansion is given symbolically
2 1.1 2.2 3,3
u = J j K'K R2 + J J KK R.4 + J J KK R6

(6.3.4)
1,2 [ W13 [ 2,3
+ J I KK R3 + J J KK R.4 + J J KK R5



116

to third order. The lack of orthogonality (relative to a Gaussian
p.d.f.) results in the last three terms. The non-whiteness of the input
process also results in multiple moment-kernel interactions. Con-
sequently, deviations in output statistics for a non-ideal input are
attributable to several sources of error simultaneously.

Just as in the development of techniques for implementing the
linear model, it is advantageous to first compute the Fourier transform

of a simulated realization of turbulence. The expansion of the realiza-

tion
A Al A A2 A | N
u(k) = K" (k) H, (k) + | K (p, k-p) H,(p, k-p) dp
1 1 2 1
e
(6.3.5)
+ * 5 00
requires only a given input series Hl because the Hi are related to Hl
by the Gram-Schmidt orthogonalization procedure. For example
Hz(kl, kz) = Hl(kl) Hl(kz) - G(kl + kz) (6.3.6)
Further, the expansion (6.3.5) reduces to
u(k) = y(k) + AZI y() y(k - p) dp + ...
(6.3.7)

+ 4, o) K(k) + ...

where
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yGo = K k) Hy ) (6.3.8)

for separable kernels.

tﬁe form of (6.3.7) represents a functional expansion in ; with
corrections for non—orthogoﬁality. The generation of ; was described in
Section 6.2. The actual simulation of u(x) involves an inverse Fourier
transfofmation after the computation of k6.3.7).

Some results of a sample computation for a non-Gaussian process
with a given skewness 0.23 and a given kurtosis 3.6 are displayed in
Figure 6.2. The method of generation of the white, Gaussian input
series was the sam; as described in Section 6.2. The procedure con-
sisted of generating repeated, serial samples of 10% up to an arbitrary
upper limit of 1032. The results for the skewness and kurtosis are
not exactly those of the input. An examination of the higher moments
of the input, EE, for n > 5, revealed that the number of points in each
of the individually generated realizations of length 104, had a weakly

non~Gaussian structure (ES = (0,06, and EE'_ 14.5 rather than their
Gaussian values of EE = 0 and EE = 15). The error in the limiting
values of skewness and kurtosis are believed to arise by spurious
kernel-moment interactions as discussed earlier. Two methods are
available to eliminate such errors —- either a trial and error method
of varying the specified input skewness and kurtosis, or a generation
of a longer, single realizatiorn, say 1032, so that the errors in the
Gaussian generator are reduced.

A second characteristic of the non-linear test simulation, is dis-

played in Figure 6.3. The spectrum weighted by wavenumber raised to a
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5/3 power displays a slight systematic underestimation of the spectral
content of the inertial sub-~range and an overestimate at scales

£ <1. Apparently, the spurious moment interactions which result in

an undérestimate the total variance (Figure 6.2) vary in scale, as
might be expected. Their accumulated effect is to reduce the effective
value of the response function near x = 0 and increase the response at
large scales. Further simulations utilizing single large arrays for
individual sample realizations can be expected to overcome this
implementation difficulty, in that the moment-kernel interactions will
be reduced.

It is concluded that the mechanics of simulating turbulence
require a close scrutiny of the Gaussian and spectral properties of the
input process in order to achieve realistic results. Further, it is
recommended that computations be conducted in phase space in’order to
utilize the accuracy of the spectral factorization procedure, with a

transformation to real space after filtering.
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7.0 SUMMARY AND CONCLUSIONS

We have examined the method of simulating turbulenée by filtéring
a white noise process. The dévelopment of'models has Been directéd
towards overéoming three areas of.we&kness in.previous filteriné h
methods. First, the calculation-of filteré by digital spectral f;ctori-
zation of empirical spectra of surf#ce layer turbulence eliminﬁges the
need to use spectra with known spectral factors. Second, the‘deQelop-
ment of linear, multi-component models follows from the methods of ﬁni—
component models after dlagonalization of the spectral matrix. Third,
the non-Gaussianl;tructure of the velocity and derivative of a
turbulent componeﬁi which 18 assoclated with the patchy nature of
turbulence was examined in several non-linear models. The results of

each of these three areas of model development are reviewed and

summarized.

7.1 Linear, Uni-Component Models

Because the linear filtering technique has enjoyed considerable
success in a variety of applications, similar models were developed
and expanded in Chapter 3.0 to incorporate aspects of boundary layer
similarity and general spectral forms. A comparison of several
empirical formulations, for surface layer spectra and the kernels
derived from them, showed that the response structure, particularly
for large scales, was sensitive to the original empiricism. A
definitive formulation for the energy containing sizes of the

turbulence awaits further experimentation and theoretical consolidation.
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| The initial response and width of appreciable response were also
examined relative to the thermal stratification. Initial response of
velocity, normalized by surface stress, was shown to increasg in any
stratification. Also, the range of response broadened with decreased
stability. The simulated turbulence has a somewhat larger memory than
the more common first order linear model -~ a property of interest for
control problems. The initial response was shown to increase‘with
height under all stratifications, but to increase more rapidly in un-
stable stratifications. The response function for the vertical

velocity component was. approximated empirically by the relationship

K @0 = 2@ e - @Y% EG) (7.1.1)
vhere

YE2 = 0,75 (0 +0.75 [z (7.1.2)

B, = 0.7 (1 +0.75¢ + 3.0¢%) (7.1.3)

~2/3

over the range
- 1.5 _<_ C i 005 (7.1.5)

and -
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0<x<10 (7.1.6)

Further studies of the response structure as influenced by
viscosity indic#ted a delay in the build-up of response to an impulse.
The delay decreased and the maximum response increased with increasing
Reynolds number. The viscous model for large Reynolds number converged
to the "inviscid" model. The response of the turbulence in the viscous
models resdlted from the lower energy content at scales comparable to
the viscous suﬁrange. The memory of the simulated turbulent process
decreased with an increase in the Reynolds number.

The predictive function of the turbulence is essentially a
single "now'" value, and the mean square error of prediction grows
rapldly with prediction distance. For example, the root-mean-square
error of the prediction at half an integral length into the future is
estimated to be 0.8 ow’ where ow is the standard deviation of the
vertical velocity component. However, the model based on a -5/3
spectral slope has a slightly larger memory than the usual first order
linear model.

A linear model of the derivative of the vertical velocity in the
viscous subrange was examined for a later application to a non-linear
model applicable to the modeling of diffusion. Because the response of
the derivative is negative over a large range of scales, the memory
of the derivative process is significantly less than that of the
corresponding velocity process. Intuitively, the reduction in memory
is compatible with the concept of increased disarray in differentiated

signals of turbulent velocity or temperature.
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Ihe change in derivative response with a change in the viscosity
ih&icated that the maximum response increased and converged towards
smaller delay with increasing Reynolds number. The response at the
large scales also converged to the invigcid response, indicating an
increasing independence of the generative and viscous regions with in-
creasing Reynolds number. Similarly, the memory of the derivative

process decreases as the Reynolds number is increased.

7.2 Linear, Multi-Component Models

The method of linear simulation was extended to the multi-component
structure of turbulence in the atmospheric boundary layer. Specifically,
the model was devised to simulate the important cross-correlations
between u, w, and 6. A simulation of the co-variances i1s equivalent
to reproducing the momentum and heat fluxes characteristic of the
surface layer.

The problem was simplified by diagonalizing the spectral matrix
at every frequency. This was possible at scales where the matrix was
diagonally dominant, or where the turbulence was nearly isotropic.

The resulting eigen—spectra were spectrally factored in the same manner
as followed in the single component models. The response functions were
then reoriented to the original component space by a special unitary
transformation which preserved the minimum phase structure of the eigen-
factors.

The basic u~w model in neutral stratification was examined in
terms of the corresponding single component response structure. In

the multi-component model, the self-response of u and w was found to be
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less than the response for a single component. Although the presence

of a vertical momentum flux decreased the self-response, the total
response of the vertical velocity to stimuli was increased by the cross-
responge. At scales greater than £/10, the total response exceeded the
sum of single component responses. Despite the increase in larger scale
response, there is only a small change in the predictability of the w
component. In addition, the prediction process remains essentially a
single point, weighted '"now" value scheme.

The multi-component model was next extended to include the effects
of stratification. Consideration of the w and v components revealed
identical initial responses for different variances, and different
memories. It was concluded that the initial response was solely a
function of the spectral distribution of variance for scales much
smaller than the energy~-containing region. The predictability of this
model increases with increasing instability, because of the increased
low frequency content. The coupling between u and w also decreased
with increasing instability. It was concluded that the decreased
coupling was a manifestation of the loss of a principal axis with the
onset of convection. The total response of w for multi-component
stimuli decreased with thermal instability and increased with stable

stratification.

7.3 Non-Linear Models

It 18 well known that a linear representation of turbulence is
fundamentally invalid for dynamical simulations. The difficulties in

developing an alternative, non-linear model are three~fold. First, the
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degree of non-linearity varies considerably as a function of scale,

and second, suitable supporting experimental evidence on which to base
even a wéakly non-linear model is scarce. Lastly, the complex iﬁfegral
equations for the expansion of the moments must be truncated both for
mathematical expediency and for'the limited experimental information
about the moments.

Computational difficulties were overcome by invoking a simple
closure for the relationships between kernels of different orders.
These separability conditions are analogous to other closure schemes
where higher order moments are expanded in terms of lower order moments.
However, the scheme is basically incorrect in its.physical interpreta-
tion. The method of separability used in the noﬁ-linear velocity model
assumes that the orders of response are locally interactive whereas it is
more realistic to expect higher order responses to be related to
integral properties of the lower order response.

The advantage of the separable kernel method is that it reduces
the simultaneous integral equation representation of the moments to
simultaneous algebraic equations. These equations can then be solved
by simple iteration. Because the resulting expansion of the moments
is in terms of the linear variance, the model is referred to as a
quasi-linear model.

The results for the variance contributions of different degrees of
non-linearity indicated that the linear contribution was overwhelming,
because the degree of non-Gaussian behavior was not large. The
spectral content of the non-linear contributions to the variance in-

creased with decreasing scale. The non-linear contributions erroneously
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form an insignificant part 6f the total energy even in the inertial sub-
range. The initlal response of the non-linear model is somewhat less
than the initial response of the corresponding linear model because of
the adjustment of the small scale variance in terms of non-linear
contributions. It was concluded that a aignificantly.larger response 1s
possible in a more realistic, non-linear model of the inertial subrange.
The memory of the linear contribution to the quasi-linear model is
somewhat reduced by the removal of variance at small scales from the
linear part of the variance. Because the non-linear contribution teo

the variance increases with instability, the memory also decreases as [
increases negatiQely.

The quasi-linear model of velocity was developed for compatibility
with the low order moment structure of a simulated turbulent velocity
component. However, the model was shown to be incompatible with a
spectral transfer of energy because of a lack of phasing between the
kernels.

A similar separable model was developed for the derivative process
of the u-component of the turbulence. Estimates of the skewness and
kurtosis as a function of the Reynolds number were based on the results
of Wyngaard and Tennekes (1970). The model of Pao (1965) provided an
estimate of the spectrum near the viscous subrange. The results for the
truncated functional expansion were found to be inconsistent with
measured large deviations from the Gaussian probabilistic structure.

For large Reynolds number (Re > 104), the non~linear algebraic equations
did not converge. For Re 5_102, the solution of the model equations was

physically unrealistic in that some contributions to the kurtosis were
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negative. Otherwise, for Re of the order of 103, fhe separable
derivative model is physically realistic, and dynamically consistent
with a non~-trivial spectral energy transfer. The energy transfer
function closely approximates a similar estimate based oﬁ Pﬁo'é model

of spectral flux convergence.

7.4 Conclusions

In this research, we have attempted to consolidate and expand the

methods for simulating turbulence in the atmospheric boundary layer.

The mathematical formulation of the filtering method of simulation

has been based on empirical results of the accumﬁlated research into the
spectral, spatial and probabilistic structure of.turbulence. The
simulation technique has been extended to spectra without analytical
spectral factors, to the multi-component spectral matrix, and to the
non~linear, non-Gaussian structure of turbulence.

Previously, in order to produce realizations of a process similar
to turbulence, it has been customary to truncate the functional
expansion of turbulence at the first (linear) order, and assume a
Gaussian probabilistic structure. In addition, the spectrum of the
atmospheric turbulence has usually been represented as f-2 rather than
f-5/3 over the range of scales of engineering interest. Although the
resulting misrepresentation of variance may be rather insignificant
between these spectral models, it is not known a priori what effect the
differences in variance distribution will have on, say, the predictive
structure of the turbulence for purposes of control and stability.

These questions have been examined in terms of some aspects of large

scale response, and of predictability.
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The necessary computational technique for all the model develop-
;ants was the digital spectral faétorization techniqﬁe. It is
concludgd that the range of applications of simulated turbulence has
been bréadened by the numerical computation of the spectral factors of
fatﬁef general spectral forms. |

The development of simulation models was extended to multi-component
representations. The methodology was simplified considerably by
diagonalization of the spectral matrix to produce multiple single
component spectra. Each eigenspectrum i1s factored as in the uni-
component model development. The multi-component spectral factors and
response functiﬁns are formed by rotation of the eigenstructure by the
eigenvectors of ﬁhe spectral matrix.

It was concluded that the total response of the multi-component
models exceeded that of corresponding uni-component models at scales
greater than about %2/2. However, the predictability of the simul#ted
turbulent process was not significantly increased in the multi-
component models.

The need to incorporate non~linear aspects in the simulation of
turbulence, particularly in synthesizing the relatively rare, large
scale gusts was discussed. Methods to achieve a reasonable simulation
of the observed patchiness of atmospheric turbulence have led to the
introduction of the discrete gust concept. Such discrete gust models
specify that turbulent realizations contain superimposed eddies of an
invariant form, such as a ramp function. The strength and frequency
of occurrence of such eddies is formulated for consistency with a

Kolmogorov spectral structure and empirical estimates of the exceedance

B
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statistics of turbulence. While such methods are more realistic than
linear, Gaussian spectral models, their dynamical basis is controversial.
Because the invariant eddy forms, for example the ramp function, are
expedient mathematical idealizations, there 18 no direct relationship

of the parameters of the particular representation with other aspects

of the structure of surface layer turbulence. The implications of

such models to known dynamical and statistical structures needs to be
studied.

The results here are a compromise between the discrete gust methods
and the well-known filtering methods. The minimum-phase response
functions constitute invariant eddy forms of random strength and
occurrence. The amplitude of each eddy is determined by the history
of the Gaussian, white noise input realization. The kernels which are
the discrete gust form, have been shown to evolve as a natural property
of the spectrum of the process. The kernels also correspond to a
defineable physical mechanism, that is, as a response to an impulse.
Moreover, the response functions have been demonstrated to be funda-
mental in describing the predictive and probabilistic structure of
the turbulence. It is concluded that the development of discrete gust
models is not independent of the spectral or filtering method, and
can be made compatible by introducing the concept of the response
structure of the turbulence.

The viewpoint taken here has been that the requirement for simu-
lating large gusts can be met by systematic recourse to theoretical
and empirical formulations of the statistical structure of turbulence

in the atmospheric boundary layer. This approach involves use of the
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spectral similarity theories of Kolmogorov (with appropriate extensions
in the generative and viscous subranges), and use of published empirical
data for the multi-coﬁponent spectra against a framework of the Monin-
Oboukhov similarity theory. In addition the formulation of a simple
non-linear model of a velocity component has incorporated low order
moment data so as to be consistent with Monin-Oboukhov and Reynolds
similarity.

The reduction of the non-~linear simulation problem to workable
proportions requires several mathematical simplifications. The (in-~
finite) functional expansion of the moments is truncated to the highest
order of available data. An arbitrary specification of the inter-
relationships among kernels of various orders reduces the numerical
complexities from one of solving simultaneous integral equations to
simultaneous algebraic equations. Although the separable model for
velocity in the form chosen misrepresents the dynamics of the turbulence,
it was concluded from an examination of the separable derivative model
that it is possible to produce a realistic one-dimensional energy
transfer locally. It remains to develop a model based on spectral
separability for the generative region.

It was concluded from an examination of test reallzations based
on a linear and a non-linear model that, within the limitations of
generating white, Gaussian noise on a digital computer and the
implementation of numerical methods in forming convolution that the
method is practical and forms a useful representation of the statistical
structure of turbulence in the atmospheric boundary layer as it is

presently understood and described.
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APPENDIX A EMPIRICAL RESULTS OF BOUNDARY LAYER STRUCTURE

Some recently reported oBservétional studies (Businger et #1, 1971;
McBean et al, 1971; Busch and Larsen, 1972) have significantly reduced
the error variance within and between the estimation of similarity
functions measured at different sites. For convenience, we choose the
results of the Kansas experiﬁent reported on by Businger et al, (1971),
Wyngaard and Cote, (1971a), Wyngaard.et al, (1971b), Kaimal et al, (1972),
Wyngaard and Cote, (1972) because of their extensiveness and their
internal consistency.

The similarity functions for shear, temperaci;e gradient and
dissipation of kinetic energy are given empirié;iiy

- for unstable stratification (- 1 < T < 0)

6@ = a-15 7t/ a.1)

8@ = 0.74 (1 - 9 /2 (A.2)

6.@ = (1 +0.5]g|2/3H2 4.3)
~ and for stable conditions (0 < 7 < 0.5) by

0 (0) =1+ 4.7 ¢ (A.4)

8, (2) = 0.74 (1 + 6.4 ©) (A.5)

b.(0) = (@ + 2.5 3/5)3/2 (A.6)
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Because the 'dissipation' of temperature variance was not measured

during the Kansas experimeﬁt, it was necessary to assume
6, =6, @ . | (A.7)

The second moments have been fitted as quadratic polynomials in , to
the data listed in the catalogue of the Kansas data (Izumi, 1972).

The results are displayed in Figures A.l to A.5. The empirical
representations of variange and co-variance are given by the following
empirical formulag

31

- for unstable stratification (-1<zg<0)

32 = 6.25 (1 - 0.40 7)° (A.8)
32 =325 - 1.0 02 (A.9)
# = 1.35 @ - 0.90 )2 (A.10)
82 = 3.24 (1 + 0.87 ¢ + 0.40 £2) (A.11)
W6 = 3.70 (L + 2.8 ¢ + 2.6 £2) (A.12)

- and for stable stratification (0 < [ < 0.5)

32 = 6.25 (1 - 0.40 )2 (A.13)
[
3% = 3.25 (1 - 0.14 7)2 (A.14)
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Figure A.1l. Variance of longitudinal wind fluctuations with
stability.
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72 = 1.35 (L+3.2C-3.0%) (A.15)
~2
ub = 3.70 (1 - 2.0 £ + 2.5 £2) (A.17)

The over-bar tilda denotes a variable scaled by u, or T, as appropriate.

The limited range of § (-1 < § < 0.5), over which the empirical
functions above are valld, excludes the free convection region of ex-
treme, negative { and the extremely stable region. In the later case
any turbulence that exists in the stable region is considered to be
associated with gravity waves, and its structure to be dissimilar to
the structure in the stability range with sub-critical Richardson num-
ber (= 0.20) (Arya, 1972). These relationships therefore define the
statistical structure of the turbulence in a region where thermal
effects do not overwhelm mechanical effects. Also, estimates normalized
by T, for § = 0 necessarily represent only an average about neutral
stratification.

Results for the similarity structure of spectra of velocity and
temperature within the constant flux layer have been reported by many
inveatigators (Fichtl and McVehil, 1970; McBean and Miyake, 1972;
Panofsky and Mares, 1968; Pond et al, 1971) in addition to the Kansas
investigators. The normalized velocity spectra Gii(f’ Z) are usually

represented empirically in a form

IO

(1 + (B, (R) Y

£ Gii(f) - (A.18)

5/3n
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Estimates of n vary between authors, the most popular being n = 1 or
n = 5/3. Because there is no clear concensus of any preferred

empirical form, we have chosen a slightly different form given by

A ¢ 2/3 §2/3
£6,# = e %73
1+ (B, £)

(A.19)

The implied 2/3 slope of the energy distribution for Bif << 1 disagrees
with Kaimal's results but is more in agreement with Busch and Larsen's
findings. However, as it is doubtful whether Monin-Oboukhov similarity
holds at such large scales, the correct formulation of the spectra
would require modifying more than the spectral slope for £ << 1. The

functions A,, and B,, are determined for compatibility of (A.19) with the

i1 ii

known asymptotic structure of the turbulent spectra in the Kolmogorov
range and the variance estimates given in (A.8) to (A.17). The

condition for the variance is

~2 [® 2/3 -2/3
g, - J £6,(F) af = 0.7 A, B, (31/4) (A.20)

0

and, the condition for the spectra for 1 << f << f L’ where fxo is

KO L

the normalized Komogorov scale given by

-3.1/4
fKOL kz(ev 7)

(A.21)

3/4 , 1/4

= Re €

¢

becomes
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(A.22)

where oy is the Kolmogorov constant appropriate to the ith variable for

a non-dimensional spectral representation. From Equation (A.20), (A.23)

and (A.24)
- 4 1 .2 =4/3
Ay " GE Y % (4.23)
3 2
- (b 453/2, -1
Bii= G 3, )T 6 (A.24)
For a value of Kolmogorov's constant, o = 1.5, for a three
dimensional kinetic energy spectrum
o, = (1, 4/3, 4/3) (18 a/55) for i1 = 1, 2, 3 (A.25)

Similarly, the empirical functions for the temperature spectrum are

/3
¢X

1’

given by Equations (A.25) and (A.26), except ¢€ is replaced by ¢el
and the coefficient, oy replaced by the corresponding coefficient, B
for temperature. Bl is not as well defined empirically as ai, with
estimates ranging from 0.4 to 0.9 (Panofsky, 1969). For consistency,
we have selected the empirical estimate based on the Kansas date,
B, = 0.8 +0.1.

The cospectra of stress and vertical heat flux have been shown
(Kaimal et al, 1972; McBean and Miyake, 1972) to have a -7/3 slope in

the inertial subrange. These findings are in agreement with anisotropy
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arguments (Tennekes and Lumley, 1972). However the horizontal heat

'fiux.cd-spectrum has a spectfal élope which varies both withiheight

.énd stdBility. Kaimal, et al, report that the slope of the uf co-

Spectrdm decreases in uﬁétable conditions from -3 near the'ground:to -7/3
at thehtop of the surface layer, and th&t in stable conditions the slope
is -5/3. The difference between -7/3 and -5/3 is considered insignifi-
cant here, and the exponent of the cospectra is estimated everywhere to

be ~7/3. The empirical form chosen for the cospectra is

Aij Kij f5/3 )
£ GiJ - 3 (A.26)
1+ (Bij £)
2/3 -1/3
The scaling factors Kij’ which correspond to ¢€ and ¢X¢€ in the
autospectra, have been determined empirically by Kaimal to be
= for unstable conditions
~ and for stable conditions
Kse(C) =1+6.4C (A.29)
Kle(c) =] 4+17 ¢ (A.30)

The empirical coefficients, and Bi , are determined from simultane-

A
) 19 J
ous algebraic conditions involving the variance and asymptotic structure
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of the cospectrum, in a manner identical to the empirical representa-
tion of the spectré. The asympototic constants, cij’ (correspond#ng
1 and Bi in the autospectra) were estimated on the basis of the.

Kansu’_datg (and the particular definition of f used in this qtudy) to

be

c,, » -~ 0.14 (A. 31)

13
Cyg = = 0.41 (A.32)
clp = 0.14 | (A.33)

Finally, the coefficients Aij and Bi.‘l

Equationes (A.25) and (A.26) and are given by

follow from the equivalent of

I
11 /3 1 ,3/2
A, =c,, (A1, (A.34)
13 ij ciJ Ll Kij
I
By, = (c—iiir"ix—l—)”4 (A.35)
1] 1]
where the normalized variances, I 13° are given as
113 = 139 =] _ (A.36)
116 = ud (A.37)

2

This completes the empirical representation of the spectra and

cospectra -~ for a given scale height and stability. It is assumed
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in what follows that the cospectra involving v are identically zero at
all stabilities because of the passive role played by v in the surface
layer (Lumley and Panofsky, Chapter 3.0). However, in order to complete
the (complex) spectral matrix representation of the surface turbulence,
it remains to establish the phase between the velocity and buoyant
fluctuations. According to J. C. Wyngaard (private communication) the
phase, determined on the basis of the quadrature and cospectra of the
Kansas data, is indistinguishable from zerb. This result which differs
from the observation of Deland and Panofsky (1957) 1is adopted for
simplicity. .
We now move to a discussion of the observations of the non-Gaussian
probabilistic structure of surface layer turbulence. If we consider a
measured turbulent velocity conceptually as the result of a summation
of multiple random influences exerted on the flow prior to the obser-
vation, it is reasonable to expect its probability distribution to at
least approximate a Gaussian distribution according to the Central
Limit Theorem. Early measurements (for example, Townsend, 1947) of
the skewness and kurtosis tended to confirm this hypothesis. Some
estimates for the skewnesses and kurtoses of single-point measurements
made at Kansas (Izumi, 1972) are given in Figures A.6 to A.1ll as
functions of . The scatter is disappointngly large for most moments.
Apparently, the averaging time, which must increase with the order of
the moment in order to adequately sample the rare events (Lumley, 1970b,
P. 73; Tennekes and Wyngaard, 1972) is not long enough. Visually,
there appears to be a general increase in all the various skewnesses
with decreasing stability. Also the kurtosis of the longitudinal

component, u, and the temperature are indistinguishable from a
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constant, whereas the kurtosis of the vertical component dec;eases
with decréasing stability. Monin-Oboukhov similarity is apparently
only satisfied for the skewnesses of W and 5. '

A pﬁsitive skewness indicates a greater probability of negative
fluctuations whose absolute value does not exceed a standard?deviation
and a greater probablility density of positive fluctuations larger than
a standard deviation. Therefofe, the w component, in near-néutral
conditions, has more small negative and large positive excur;ions than
a strictly Gaussian distribution. This arrangement increases in un-
stable conditions and decreases in stable condifions, possibly reversing
itself near § = 0.5. The temperature process is likewise skewed.
Presumably, in unstable condition the more probable large positive 0
excursions are associated with the increased probability of large
positive w excursions. Finally, the longitudinal velocity distribution
is symmetric in the range, - 1 < ¢ < 0.5.

The kurtosis i1s a measure of the integrated probability density
in the extremes of the distribution irrespective of the sign of the
fluctuation. PFor a kurtosis exceeding 3, the process would have a
greater concentration of large, absolute occurrences of eithgr sign,
greater than one standard deviation, than would a Gaussian process.
From the data displayed in Figures A.10 and A.l1ll the vertical velocity
and buoyancy fluctuations contain more large excursions than would occur
in a Gaussian process. Also the u component (Figure A.9) 18 associated
with a more regular process than a Gaussian process. With increasing
ingtability, u and © indicate no pronounced change in théir ¢bntent of

large fluctuations, while the w process tends to become more regular.
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~ The nonAGau-Qian structure in terms of the skewness and kurtosis
as a function of stability has been approximated by the following
relationships

-~ for unstable conditions (-1 < L < 0)

Mg - 0.12 (1 ~4.7C - 2.3 %) (A. 38)
Mg - 0.34 (1 ~3.22-1.3 %) (A.39)

- and for stable conditions (0 < < 0.5)

M, = 0.12 (1 - 2.0 1) (A.40)

ww

-0.34 (1~2.17+1.92% (A.41)

%

while for the entire range (-1 < g < 0.5)

i =0 (A.42)
Mi - 2,7 (A.43)
M = 3.7 (1 +0.09 ©) (A.44)
M = 3.4 (A.45)
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APPENDIX B DIGITAL SPECTRAL FACTORIZATION

The spectral factorization method, discussed in Section 2.4, pro~
vides a technique for defermining a phase characteristic to associate
with the known modulus (or spectrum) of a complex function, so that its
Fourier transform will be A one-sided physically realizable filter.
This appendix describes the implementation of this approach computation-
ally. 1Its use is not limited to rational spectra. The use of the
fast Fourler transform (FFT) algorithm provides a very efficient
method of solution. Other methods such as Wiener's predictive
decomposition and Fejer's solution for the roots of a polynomial
(Robinson, 1967b) are slow and inaccurate by comparison.

The turbulent process represented by the empirical spectra of the
model is referred to as a continuous-parameter process. The necessary
and sufficient condition for the spectrum of a continuous-parameter
process to be factorable is that the spectrum be absolutely continuous

and satisfy the Paley~Wiener condition that

lﬁ_ﬁigl df > - (B.1)
o I+ £

In other words, the spectral representation does not converge for
f + » a8 rapidly as an exponential, exp - fn, where n > 1. However,
¢(f) must nevertheless approach zero in the limit of large f.

The application of the FFT algorithm to spectral factorization
requires that the continuous-parameter process defined over ~ ® < f < &,
be converted to a discrete-parameter process over a finite range

- 7T <u<Tm, where
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u=2tan L £ (B.2)

For a discrete-parameter, process with spectrum Yy, to be factorable its

spectrum must be regular, or alternatively,

ﬂ 0
I ln Y du > - o (B.3)
-T

Rino (1970) has shown that the discrete parameter spectrum will be
regular only if the continuous parameter spectrum approaches zero in

2,p+l
)P

the limit of large f no faster than a power of (1 + f or in the

limit

0<1m o) A+ )P < (B.4)
£
where p is some positive integer approximating the behavior of the
spectrum in the limit. The coordinate transformation (B.2) guarantees

that ¢ defined by
Y(u) = (1 + cos u)-(p+1) ¢(tan u/2) (B.5)

will be regular on [-m, T].
We will follow the development of Section 2.4 in implementing

spectral factorization, but with Fourier transformations in terms of the

/2

FFT algorithm. The expansion of 1ln wl becomes
N-1
n WEHIY? 2 3 o, exp(-1 2BY (8.6)
= t=0
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Equivalently, the o coefficients for the regularizeﬂ process are

N-1

- 1 2T, 1/2  2mt '
a, =3 nfo 1n [YP( N Y] cos (—i——ﬁ ‘377)

From (2.4.20) the minimum-phase kernel transform, §, whose modulus

is ¢, 18 given by

A 22T 2mn '
g ( N exp h ( N ) (B.8)
where
a N/2-1 o
h (2"_‘1 «-24+ T o (-1 Zﬂ_nt.) + (_l)n _n/2 (B.9)
X’ 2 oy E N 2

The final step is the recovery of K, where

KK =¢ (B.10)

from § where

g =y (B.11)

The solution is given as an approximation (Rino, 1970)

N .
R(T) 2/Z & T yi L_(21) © (B.12)

n=0

.
where Ln is the Laguerre polynomial of order n. The coefficient Y, is

derived from g by a Fourier transformation
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N ,
g (%) = I vy, expl-1 -2-"—;;3] (B.13)
t-O ’ /

Also, Yi is derived from Y, , by iteration

1 _
PR
M_1 M-l M-1 '

Yy = (g1 vy ) i>1 (B.15)
0_1

Yo Y, (B.16)
)=yt 121 (8.17)
"3 Ji ] =

The computer program written to factor a given spectrum was

calibrated for a spectral form
2, .~N
o(f) = (1 + £7/N) (8.18)

which has a known response function (for a given N) of

/2 ~N-1
K(X) = -NLN_—’{-!—- exp - Nl/z'i x>0 (B.19)

The difference between the analytical and numerical solution, for various
values of N, are displayed in Figure B.1l. The error is insignificant
up to about X = 7 and N = 4 and is insignificant to large x as N de-

creases. For N = 1, the error is of the order of the single precision
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accuracy. Although the response function itself is relatively small/

/the

(~ 10_3), for iarge X, say x > 5, for all N, it is of the order of
error iﬁ the method. As a result any simulation of turbulence at
scales about 10 times the energy-containing scales using the kernels
can be expected to be in error. However, as such scales are not of
immediate practical concern, the algorithm for spectral factorization
is considered accurate for most purposes.

To be factorable, a given spectrum must satisfy (B.4). The question
arises as to the compatibility of spectra which vary as fp+1 in the
limit of large £, where p is not an integer. The approach used in this
study has been to ensure that the largest frequency, say, fMAx’
represented by the FFT is at a scale much smaller than the resolution
desired in constructing the filter. The nearest integer approximation
to the parameter p in (B.4) is then computed on the basis of the
spectral energy densities at fmax and fmaxlz' Succeeding computations
are then inaccurate only in their representation of the spectrum near
fmax’ or in the computation of K very near % = 0. Suitable convergence

5/3

for a £ epectral form was found by choosing fmax > 40, or well

into the inertial subrange.
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Simulation of Atmospheric Turbulence
by Proper Orthogonal Decomposition

John A. Dutton and Erik L. Petersen
ABSTRACT

A method that produces realistic simulations of atmospheric
turbulence is developed and analyzed. The procedure makes use of a
generalized spectral analysis, often called a proper orthogonal
decomposition or the Karhunmen-Loeve expansion.

A set of critéria, emphasizing a realistic appearance, a cor-
rect spectral shape and non-Gaussian statistics, is selected in
order to evaluate the model turbulence.

An actual turbulence record is analyzed in detail providing both
a background for comparison and iInput statistics for the generalized
spectral analysis, which in turn produces a set of orthonormal
eigenfunctions and estimates of the distributions of the corresponding
expansion coefficients.

The simulation method utilizes the eigenfunction expansion pro-
cedure to produce preliminary time histories of the three velocity
components simultaneously, and then, as a final step, a spectral
shaping procedure is applied.

Two experiments are performed, providing two time histories of the
velocity components of 30 minutes duration. This experimental tur-
bulence 1s analyzed and judged to be a realistic simulation of actual
turbulence.

The method is unique in modeling the three velocity components
simultaneously, and it is found that important cross-statistical fea-
tures are reasonably well-behaved. It is concluded that the model

~provides a practical operational atmospheric turbulence simulator.
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Simulation of Atmospheric Turbulence /
by Proper Orthogonal Decomposition /

John A. Dutton and Erik L. Petersen
1.0 INTRODUCTION

The demands for a realistic simulation of atmospheric turbu-
lence have increased over the years because of its obvious importance
in diffusion, aeronautics, wind-loading of structures, and all
boundary layer prQcesses.

Requirements to be imposed on turbulence simulation schemes must
produce a compromise between the accuracy with which the empirical
statistical structure is represented and the feasibility of the
computational scheme. A set of criteria were suggested in a previous
NASA report bf Dutton and Deaven (1971). They are, slightly modified:

(1) The model, through variation of internal parameters, should
be able to simulate the various intensities of turbulence in the
atmosphere and to provide an estimate of the likelihood of occurrence
of each time history. This flexibility makes it possible to generate
time sequences that approach threshold (or catastrophic) intensities
for the systems whose response is being studied and to estimate the
probability of failure.

(2) The model should produce time histories that exhibit the
sequential behavior of actual turbulence.

(3) The model should produce signals that possess the most
notable observed statistical characteristics of actual turbulence: the
.non-Gaussian behavior of the density function and the exceedance
statistics and the dependence of the enmergy spectrum on the -5/3
power of the wave number or frequency over a wide range.

Standard methods that filter a white noise process so that the

resulting spectra resemble those of turbulence fail to satisfy most of
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these criteria. Usually a linear filter is used with Gaussian white
noise as input, and so the resulting simulated turbulence 1s also a
Gaussian process, clearly contradictory to observed evidence.

The direct use of observed turbulence, which obviously satisfies
the last two requirements, has only limited value because the first
requirement is not satisfied.

The fluid motions to be modeled are described completely by the
Navier-Stokes differential equations together with approprilate bound-
ary and initial conditions. Despite the simplicity these equations
possess compared to the complexity of the motions they describe, it
is by no means feasible at the present, nor in the foreseeable future,
to use these equations directly in operational simulation models.

The model to be presented in this report is based on an approach
suggested by Dutton (1968) and further elaborated by Dutton (1969) and
Dutton and Deaven (1971).

Information is extracted from measured turbulence by means of
Loeve-Karhunen expansions and is carried in the model by the ortho-
gonal functions and the statistics of the expansion coefficients. The
method is based on the Proper Orthogonal Decomposition Theorem.

In contrast to most models, this model generates all three
velocity components simultaneously, and it is found that the simulated
time histories can meet most of the requirements stated above. More-
over, cross—statistics between components seem to be modeled satis-

factorily to at least second order.
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2.0 REVIEW OF SOME PREVIOUS SIMULATION METHODS BASED ON THE

PROPER ORTHOGONAL DECOMPOSITION THEOREM

The first attempt to apply the Proper Orthogonal Decomposition
Theorem in the study of turbulence apparently was made by Lumley
(1965). Before that, the basic theorem, given by Loeve (1955),.had
proven useful in the study of large-scale meteorological features
(for example, Lorenz, 1965; Kutzbach, 1967).

The outline for the application of the method in the simulation
of atmospheric turbulence was given by Dutton (1968) and Dutton and
Deaven (1969). The theory wés discussed in some detail and an
attempt was made to use the method to determine if the large gusts
as measured at Cape Kennedy had a characteristic structure. Sixty
large gusts for each of the components u and v were extracted from a
turbulence record. It was found that eight eigenfunctions explained
at least 97 percent of the variance for each component, leading to the
conclusion that the large gusts had a characteristic structure.

This result pointed to the possibility of simulating large gusts
by using the eigenfunctions and by sampling the expansion coefficients
from estimates of their respective distributions.

Before this approach can be applied in practice, it is obviously
necessary to determine:

(1) how to model the turbulence between the gusts,

(2) how large a fraction of the record shall be occupied by the
large gusts,

(3) how much of the total variance shall be due to the large

gusts.
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An answer to these questions was attempted by Smith (1971) in
the research done under NASA contract NASA-~21140 for his Master of
Science degree. Smith tested and evaluated several simulation methods
using the three criteria described in section 1. These three criteria
were compressed to the following tests:

(1) Does the simulated turbulence look like turbulence records?

(2) Does the energy spectrum fall off as the -5/3 power of
wavenumber?

(3) Does the probability of getting small and large values
exceed the Gaussian probability even though the density function is
nearly Gaussian? |

(4) Does the exceedance statistics, as represented by the
probabillity of crossing a certain level per unit time, look like those
obtained from real turbulence?

The following description (2.1-2.6) of methods and their evalua-
tion is largely extracted from Smith (1971). Results of tests against

the four criteria above are given in Table 1.

2.1 Random White Noise

Random noise as a discrete random signal that contains equal
energy at all frequencies can be generated using the random generator
available in almost all computer systems. It is constructed as an
.ordered set of random variables such that for each point in time, the
random variable is selected independently from a normally distributed

population.



1 - AN EVALUATION OF SOME PREVIOUS SIMULATION METHODS

Criteria
Realistic Sequential A - 5/3 Slope
Appearance of the in the Energy- Non~Gaussian Realistic Exceedance

Generation Scheme Time-History Spectrum Density Functions Statistdics
Random white
nolse no no no no
Shaped random
white noise improved yes no no
Random noise no yes yes no
with gusts (It is too easy to but exaggerated

distinguish the gust.)
Shaped random no yes yes yes
noise with gusts (as above) but exaggerated
Random noise with no no yes yes
variable gusts (as above)
éhaped random noise .
with variable gusts improved yes

yes yes

0LT
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2.2 Shaped Random Noise with Preserved Phase Angles

Because random noise clearly failed criterion 2 because of the
flat energy spectrum, an obvious step was to take random noise and
then shape the energy spectrum to give it the correct -5/3 slope.

This was accomplished by taking the Fourier transform of the generated
series and changing the Fourier amplitudes according to a predescribed
scheme. The scheme also included an algorithm for preserving the
Fourier phase, because these are believed to be of some importance

for the intermittency of the turbulence (see section 2.8).

2.3 Random Noise with Gusts

The most pronounced failure of the method above was its inability
to produce the non-Gaussian nature of the probabilistic structure.
The method proposed by Dutton using the basic structure of large gusts
as revealed by empirical eigenfunctions was then attempted. From the
first eight eigenfunctions, a number of gusts were constructed and
inserted at random. into a white noise series. By trial and error it
was found that the best result was obtained when the gusts occupied
40 percent of the total series, and when the ratio of variance of gusts

to variance of white noise was 19.

2.4 Shaped Random Noise with Gusts

The series generated in Section 2.3 was then subjected to a

spectral shaping as described in Section 2.2.
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2.5 Random Noise with Variable Gusts

The same procedure as described in Section 2.3 was followed
except that before the gusts were inserted into the series, the
length of the gusts was made variable by randomly expanding the gusts

by factors of one, two, or three.

2.6 Shaped Random Noise with Variable Gusts

The series generated above was subjected to the spectral shaping
process. Although this model apparently turned out as acceptable,
it does not satisfy the requirement that it should be possible to
generate a wide range of turbulence simulations by adjusting a few
parameters and so the tests for semsitivity to changes in the various
parameters would be very cumbersome. Actually the parameters in the
model are those describing the orthogonal functions representing the
gusts, the distribution functions of expansion coefficients, the ratio
of gusts to total record, the ratio of variance of gusts to wvariance
of total record, variations in the length of gusts, the points where
the gusts are to be inserted, and the spectrum to be produced by the

shaping process.

2.7 Simulation Using Empirical Orthogonal Functions

The possibility of simulating turbulence by using empirical
orthogonal functions to represent the entire time series was in-
vestigated by Dutton and Deaven (1971) and Smith (1971). An
alternative approach suggested by Hirose and Kutzbach- (1969) was

applied to a sample of nine turbulence runs each of 1024 points.
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The approach makes it possible to obtain the eigenvalues and the
eigenfunctions by diagonalization a. 9 X 9 matrix instead of a 1024 X
%PZ4 matrix as required by the conventional method. " Eight eigen-
functions and corresponding expansion coefficients distributions were
extracted and then used to simulate turbulence runs. The method ap-
parently fails because of dependence between expansion coefficients

and dependence between and within the eigenfunctions.

2.8 Simulation by Manipulating Fourier Phases

An attempt was made by Spark and Dutton (1972) to assess the
importance of phase angle (Fourier-phases) considerations in the
modeling of intermittent turbulence. The conclusion of the study was
that intermittency appears to be dependent on some higher order
association in Fourier space and that any mathematical model in Fourier
space for intermittency would extremely involved. Nevertheless, based
on qualitative arguments it was suggested the Fourier angles might be
used to simulate turbulence by the following procedure:

(1) generate a random Gaussian series,

(2) obtain its Fourier transform and the Fourier coefficients,

(3) form the phase angles from the coefficients,

(4) replace the original spectrum with a smoothed -5/3 spectrum

(5) adjust a suitable number of phase angles according to a
preassigned schedule devised by Spark and Dutton,

(6) wuse (5) to find the new Fourier coefficients and back-

transform these to obtain the simulated turbulence.
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Because the manipulatioh of the angles under step 5 essentially
creates gustlike events in the series, this model bears strong
resemblence to the model described in section 2.6. Unfortunately,
it also shares with it some of the disadvantages, including the
difficulty in assessing the sensitivity to changes in the various

parameters.
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3.0 THE GENERALITY OF TURBULENCE PRODUCED BY MODELS

Empirical turbulence models of the type discussed in this report
evidently will depend on information extracted from one or more actual
turbulence records. Consider the case where a turbulence record mea-
surement at 6 meters height at mean wind speed of 6m/sec has been used in
the creation of the model, and the model turns out to work satisfactorily
in the sense of simulating turbulence resembling actual turbulence
occurring under the above conditions. Will it then also be‘possible to
use the model to simulate turbulence as found in clear air turbulence
with, say, a length scale of 600 meters and a mean windspeed u = 30m/sec?
If the answer is no, the usefulness of the model will certainly be
severely restricted.

Fortunately, measurements in the troposphere and the stratosphere
show that turbulence possesses in the inertial subrange a high degree
of self—similarityl. Because amplitudes are related to the 1/3 power of
the wavelength, if the wavelength in a turbulence record obtained in
the inertial subrange is expanded by a factor B, then an amplification

/3

of the velocity amplitudes by Bl would yield a record similar to

turbulence (Dutton and Deaven, 1969).

1)In the sense of B. Mandelbrodt's (1965) concept of self-similarity:
A process with random variable X is self-similar if the variable
obtained by the magnification of the wavelength by h can be represented
as a suitable magnification of the amplitude of X so that both X and
Xh have the same probabilistic structure.
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From above, for the first'example, we have: a length scale of

6ém and a velocity scale of u = 6m/sec, yielding a time scale

=
I

L/u = 1 sec.

3
]

For the second example: u = 30m/sec and L = 600m, T = 20 sec.
Thus we have to expand the temporal scale by a factor of 20, hence
the velocity amplitudes have to be magnified by a factor 20 1/3.

The "1/3 power law" is only valid in the inertial subrange where
the spectra fall off as -5/3 in a log-log plot. In general, the
concept of self-similarity is only useful for processeé in which the
spectra exhibit power law behavior. Unfortunately, most turbulence
spectra in the form kS(k) have a rather flat maximum from which the
spectra fall off towards both higher and lower numbers.

However, for many engineering applications, it is usually the
energy content in the inertial subrange that is of most importance,
and so if turbulence can be simulated in this range by an appropriate
model, then time and velocity scales can be changed as required by
particular applications.

Another strategy would be to assume the spectra exhibit different
power laws, on opposite sides of a particular wave number, KMAX’ an

assumption which finds some support from observed turbulence. Then

we would have

kS(k) = Aky S(k) Ak K

IA
I

for

kS(K) = BV S(k) = B Y7t
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Denoting the temporal multiplication factqr by 8 and the velocity

1

factor by h, we have from Dutton and Deaven

_ o~v/2
=B K < Kaax

for
/2

K > K
— MAX

where it follows that Y + 1 = 5/3 gives h = 31/3

In this approach, we would obtain the Fourier transform of the-

simulated sequence and then all amplitudes on the side K < K

MAX

would be adjusted by the factor appropriate for those wavenumbers

while all amplitudes on the other side would be adjusted by the other

factor. These adjusted amplitudes would be used

to produce a series appropriate for the expanded

in a back-transform

time scale.
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4.0 THE THEORY AND THE MODEL

The experience gained through the various studies mentioned in
the previous sections emphasizes the difficulties in generating the
correct time sequence of the empirical turbulence, even if reasonably
chosen statistics seem to be modeled rather well. But the experience
also showed that one way to success could be to emphasize the creation
of gust-like events in the generated series, thus simulating the so-
called "surprise" of real turbulence. The current model is based on
such ai approach, and the philosphy behind it is given a fuller treat-
ment in the last section. For the present, it is sufficient to note
that in order to find the structure of the gusts it is necessary to
select a certain type of analysis and perform it on records of actual
turbulence.

Imagine the turbulence records to be composed of intervals of
"passive turbulence" and of intervals of "active turbulence', where by
active turbulence intervals we understand sequences of the records in
which it is observed that a gust prevails for some specific length of
time, T. Hypothesize further that the active turbulence is composed
of a quasi- deterministic gust structure to which is added passive
turbulence. We can then confine our attention to the active intervals
because, 1f we can find the gust structure, and if we can find a way
to represent the passive turbulence, we know from an analysis of the
turbulence records how the passive and the active intervals are
distributed in the records, and a model proposes itself: generate

series of passive turbulence and add to it the gust structure in such
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a way that the passive and the active intervals become distributed as
in the actual record.

It is shown in Section 8 that imposing certain prin-
ciples in order to find the gust structure and an economical
representation of the passive turbulence lead to the Fredholm integral

equation

T
J R(s,t) ¢y (t) dt = A ¢, (s)
0

where
R(s,t) = E{f(s) £(t)}

and fn(t) is the nth interval (tn <t <t +T) of active turbulence
taken out of the records and then redefined over the interval (0,T).
The expectation operation E{ } is performed on the ensemble of
fn(t), n=1,2, ...

The ¢'s are orthonormal eigenfunctions of the correlation matrix
R(s,t) and under the assumptions stated abbve, ¢1 reveals the gust
structure and ¢2, ¢3,.... provide us with an optimal expansion of the
passive turbulence over intervals of length T.

We have for an interval of active turbulence

(<]

(4.1) gA(t) = k§1 ak¢k(t)

and for an interval of passive turbulence
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2
4-2) gy(®) * I oy ()

The probability density functions of the expansion coefficients

t

ak are estimated from the fn S

n
o = J fn(t) d>k(t) dt

hence the ak's in (4.1) and (4.2) are sampled from their respective
distributions.

_Representing the gust structure by a function that is orthogonal
to all the funcg%ons used in the expansion of the passive turbulence
obviously requires that the two processes, the gust and the passive
turbulence, be orthogonal, a requirement we only can expgct to be met
approximately. Then, because of a possible non-orthogonality between
gust and passive turbulence, we would expect ¢1 to give most of the
gust structure plus a little of the passive turbulence, ¢2 some of the
gust and more of the passive turbulence, and so on. To account for
this in a generating scheme, one approach would be to use all the ¢'s
to construct all sequences of the turbulence, but to diminish the
amplitudes of the first eigenfunctions approximately in the intervals
with passive turbulence, for example by transforming the probability

density functions for the expansion coefficients.

4.1 The Model

The discussion above proposes that the model be established in
two parts: an analysis scheme and a generating scheme. Thus, the first

scheme describes how to obtain the eigenfunctions and the second scheme

how to use them.
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The analysis scheme

The stepé in carrying out the computation are:

Al Select one or more observed turbulence records.

A2 Select a characteristic feature in the records believed to be
of importance for the intermittencj of the turbulence and select the
corresponding time interval, T. (Such a fea-ure may be a large gust.)

A3 Extract as many as possible time intervals containing the
feature In order to construct a representative ensemble fn(t). Estimate
the probability density function for the time interval between the
occurence of the feature.

A4  Subject the ensemble to a Proper Orthogonai Decomposition to
obtain eigenfunctions and expansion coefficients and estimate the
appropriate probability density functions of the coefficients.

The generating scheme

Because the eigenfunctions are defined on a fixed interval, it is
necessary to generate the turbulence in multiples of this interval.
From A3 we know the distribution of the time intervals between the
events, and we can then pick values from such a distribution to getermine
where in the generated series the special events shall occur. From the
appearance of the eigenfunctions, one can estimate how much active
turbulence and how much passive turbulence the first few eigenfunctions
explain. According to this estimate the weight of these eigenfunctions
is diminished in the passive intervals.

The generating scheme then becomes:

Gl Generate a set of random numbers, using the probability
density functions from A3, to establish the sequence of intervals of

active and passive turbulence.
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G2 Generate the active intervals by sampling the expansion

coefficients from their probability density functions (from A4) and

multiply the respective expansion coefficients and eigenfunctions and

add the functions together.

G3 Generate the passive intervals as above, but make appropriate

transformations of-the first few probability density functions,

and if necessary,
G4 Obtain the
1. Change
proportional to the
(see Section 7).
2. Obtain
the amplitudes by a
with Section 3.

Then back transform

Fourier-Transform, let the phases be unchanged, but
the amplitudes such that the energy spectrum is

~5/3 power of the frequency over a certain range

the appropriate time and length scales by multiplying

constant which has been determined in accordance

to the time domain.
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5.0 CONSTRUCTION OF THE MODEL

The ensemble fn(t) was selected from a turbulence record that
will be described in the next section. It is composed of 0.10 second
block-averaged values of the u,v, and w components; the total length
of the record is 50 minutes.

The selection of the ensemble fn(t) was then done heuristically
in the following way:

1. T was chosen to be 5 sec (=50 data points)

2. The record was divided into 100 segments, each of the length
30 sec (=300 data points)

3. Inside each segment, the maximum value of w was found and a
5 second interval of data cenFered around this value was picked for all
the components

4, The mth ensenble function fm, was then obtained from the mth
segment for 1 < m < 100, and the function was constructed by patching
together the u,v, and w components (150 data points) sequentially.
The occurence statistics were then very simple, and a gust interval
of 5 seconds duration was placed at random inside each sequence of 30
seconds length.

The numerical approximation of (4.3) becomes
(5.1)  IR(s,t)0,(£) = A_6 (s)

which is the usual eigenvector equation used in principal component
analysis.

We have
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R(s,t) =% i FITn(s) F_(t)

where T denotes transpose and Fm is al X M and FE aMx 1 matrix.

The matrix Fm has the following structure

P o) = w (D, v (2),..., U (50), vV (1), V_(2),...,V_(50),
m w (1), Wm(2), cee wm(so)]

which gives R(s,t) the structure

Uu uv oW
VU VW VW

WO WV WW

where, for example, UV is the 50 x 50 uv correlation matrix.

A more straightforward way to perform the analysis would be to
create three ensembles, one for each of the components, u, v, and w,
and then get three sets of eigenfunctions by solving (5.1) for
R(s,t) = UW, VV, and WW respectively. But then we would have disregarded
all cross statistical information, and it would be difficult to intro-
duce it into the analysis later.

The way the eigenfunctions are comstructed in this analysis by
patching together u, w, and w enables us to use all the second order
cross statistical information available to construct the eigenfunctions.
The function ¢1(t) would then give the most likely simultaneous occurence
of u, v, and w during a gust in w.

The patching of ensemble functions has been used by Jaspersen

(1971) to analysis vertical profiles of meteorological variables.
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5.1 The Eigenvalue Spectrum and the Eigenfunctions

A diagonalization was performed on the 150 x 150 matrix,

R(s,t), giving the eigenvalue spectrum shown in Table 2 and the 150
eigenfunctions of which the first 14 are shown in Figure (5.1) and the
first 20 are listed in Table 3.

The first two eigenfunctions seem to explain the average values
of u, w, and w during the "gust", and it is not surprising that this
is the most highly cross-correlated feature. We could have prepared
the ensemble from which the eigenfunctions were calculated in such a
way that the mean of u, v, and w was zero in each ensemble functionm,
or we could have removed the ensemble mean from each ensemble function.
In both cases we would then have to carry some additional statistical
information in the model which can be carried by the eigenfunctions
and the expansion coefficient distributions themselves.

The third eigenfunction is mostly devoted to the peak in w, and
to a lesser degree so are the fourth and fifth eigenfunctions.

Fig. (5.1) reveals how the eigenfunctions, as the number increases,
tend to explain features on a smaller scale.

Table 2 shows that 72% of the total variance in the ensemble is
explained by the first 5 eigenfunctions, 82% by the first 10, and 91%
by the first 20. In the final generation scheme, the first 20 eigen-
functions were applied.

Because only 100 ensemble functions were used to create the 150 x 150
matrix R(s,t), the actual order is 99, and only 99 non-zero eigenvalues
can be calculated. This creates some interdependency between the
eigenfunctions. However, the appearance of some degree of dependence

does not seriously compromise the method.
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TABLE 2

EXPANSION STATISTICS FOR THE FIRST 20 EIGENFUNCTIONS

Eigenfct. Expansion coeff. ‘Eigenvalues
Nr. . Mean  Stand. dev. 2 Accum: %
1 -1.72  6.63 47.0 27.0 27.0
2 1.39  6.28 41.4 23.8 50.7
3 - 3.39 2.92  20.0 11.5 62.2
4 0.96 3.15 10.8 6.2 68.4
5 0.83 2.29 5.95 3.4 71.8
6 -0.22 2.21 4.92 2.8 74.7
7 0.17 2.00 3.98 2.3 76.9
8 -0.06 1.91 3.67 2.1 79.0
9 -0.09 1.70 2.89 1.7 80.7
10 0.21 1.63 2.69 1.5 82.2
11 0 2.26 1.3 83.5
12 2.20 1.3 84.8
13 2.03 1.2 86.0
14 1.68 1.0 86.9
15 1.56 0.9 87.8
16 1.46 0.8 88.7
17 | 1.26 0.7 89.4
18 1.19 0.7 90.1
19 | 1.08 0.6 90.7

20 1.04 - 0.6 91.3
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1

»0,04206
=0,04081
E0'0u783
=0,03543
90.03569
»0,035065
m0,03531
=0,03729
wil, 03315
-0,04%898
90.03226
=0,04470
*0,04119

=0,06724

!0.09820
-0.0“767
=0,04190
=0,03003
en,03914
=0,02324
-0.02599
90.03626
90.03035
«0,04488
=0,06744

=1 09“02

=0, 07177
-0'05552
-0 06373
*0, 04609
L2V 03868
-0.05100
g0.0ﬁbSu
~0,05133
!0’05076
*0.0?192
-0.0@132
W0Q°5577
90.0@&2@
90.0°1°7
=0,04793
-0.03735
0. 003416
=, ﬂ3273
-0.04333
=) 05658

0.05358
=0,04834
=0,05762
-0,02114
=0,07741

TABLE 3 - LISTING OF THE FIRST 20 EIGENFUNCTIONS

1 = 10, PODINTS 101}

EIGENFUNCTIONS
2 3 4

004389 =0,02797 =0,08581
0404060 =0,02414 =0,12440
003728 =0,02649 =0,12406
0,08184 =0,0178%3 =0,314562
0,02959 =0,02074 =0.14946
002801 0,00547 =0,13323
0,02330 0,00501 =0,14107
0,01B78 =0,00723 -0,15541
001598 0,00937 «0,20086
P,01299 0,01624 =0,18986
o,oaasa =0,00139 =0,14884
feb2i47 0,02805 =0,11219
0,02030 0,01994 -0, .13702
0,02577 0, 01675 =0,13657
De02001 0,00250 -n 14097
0,01477 =0,00540 =0, 13932
0,02738 0,01973 =0,38026
0,03051 0,04513 =0,315510
0,0397p U,05669 =0, 12474
0,03649 0,0697%5 =0,11510
004075 0,11781 -o,iziui
De04732 0,16444 ~0,32159
0,05686 0,18183 =0,06258
005902 0,24642 =0, 03696
0,07061 0,33675 0,06246
0.09657 0,50081 0,17845
008984 0,3152% o,xzooa
0,07758 0,16737 0,03343
Na06169 0,14509 «0,02709
0,03394 0,14624 »0,02670
004058 0,14897 «0, 02668
O uddTs 0,11854 =0,06016
N,03722 0,13155 »0,05263
005453 0,09698 =0,08474
0,04243 0,0R998 w0, osasa
0.03346 0, 00272 =0 09174
0.02018 0,06683 =0, T06410
0,03075 0,08516 =0,03320
0906803 0,11209 -0, 107511
0404cds 0,10604 =0, 04539
o.oal7a 0,09315 «0,02115
0,03851 0,06541 0,03253
0,04054. 0,06947 0, 02845
0,03850 0, L0315 0,00512

0.02138 0,063B0 0,04869
0402753 o,o7naa 0,05913
0,02323 #,054%52 0,05223%
0,02620 0,05092 o, 02323
D.01868 00,0407t 0, 05386
0,02995 0,02220 0,01798
0407562 0,08443 =0, 05651

= 150 3 THE. W COMPONENT

EIGENFUNCTION

5

=NeN0U6S
0, 04763
=~0,08169
*0,13505
=0,16944
=0,14963%
-0,1&873
=0,11165
-0q10°16
=0, 08036
90,09325
=0,06660
-0.05330
“0,06202
=0,03094
0,04100
n.N2416
0,04619
0,01881
0,04623
f,01166h
-0900252
Ne 01489

004607

N,13729
0.306385

Ne12825

=0,02116
-0003690
007162
-0,01957
-0.0120“
90.04630
“0.12999
-091166)
-0.13““9
wi,13872
=0,12680
=0,10986
-0,13220
=0, 09404
'ﬂ911768
=0,13926
»0,13930
=,16254
=0,17244

LIUN

6

18030

-0,11376

=0,
=0

-0'

=0,
=0,
=0,
=0
-0,
=0,
-0,
=0,
=0

»(
=)
Oy
0,
04
=0,
-l
=0,
{0,
LI
LY
-{
0
0

0

0
]

]
0

04
0y
)

-{l,

11044
012440
09793
03332
03103
oasné
e12310
16348
, 12046
(11473
09598

,07455
=0,
=0y
=0,
-0,
=0,
02557
00022

12676
104AS
11262
10466
08477

nooe6bd
04940
05318
01027
10615
obes?
nDBU9L
WYY
«03B72

L 02856
03643
(01168
) €
W 14014
0,

10268

19044

25737
26244
04
13255
0, _
12808

18101
14749

03479
07750
03805
03749

=0,21742 =0,02139

'0_18563
=N,17822
“)a14597
=(1,09798

0y
0

DQ
-O!

03201
01389
05043
05196

7

0419475
0,20585
b.22616
0,264878
N.20090
0419717
0.,15961
010041
Ue05649
0405509
w(},00780
-0'05921
~0,14827
90,20963
=0,20989
=(0a17647
Pﬂ.l“és?
~0,13660
-0,22298
?0'?0088
=0,17554
=0,16886
=0,1635¢8
0,00568
Ne10859
0417679
0,11482
n,00764
0,00823
[ 06516
0.0u137
m0,03757
~0,07781%
“0,04540
=0,07145
=0, 021814
-0,04249
0,02164
=0.00313
0400482
0e02228
0,03409
0405272
Ne02081
Ne.06%3h
0,08191
=) 0050n
=(,0445%
=0,09210
-0!96935
"0.1002]

8

«0,153006
=0,17187
-0,20451
90,156“8
«(,18632
90,15749
~0,08936
-(),00897

=0,03765

Da,06043
0,04969
0,035403
n,00654
0,02609
=0,01728
=0,02024
=0,03500
w0,06051
=0,04703
=0, (6677
90,12518
-0.17291
=0,14064
-0,11573
=0,08119
=0,03966
N, 08750
0,18096
De17638
0,14867
0,13508
0,05377
0,03032
0,03782
003059
~0,01298
0,00599
0,07116
(406551
0,10830
0,07108
N 02566
pel010
0,02411
0,00303
0,01892
0,01750
), 04827
0,03976
0,03040

=0 ,08565

9

0,04910
n,11482
H,07148
0,04803
=0,05538
Da 00247
=0,01681
=0, oéaaa
0, 08899
-0,10717
=0,18441
,0,19175
=0,14193
=0, 08035
=0, 02754
0.03502

0,10122

0,08827
o 13343
J1d174

0 20154
0Oy 20463
De15668%
[ 138“4
0,05728
~0,05826
=0,06038
=0,12368
=) e16599
=0,13519
=0,07319
90.0701§
=0,09439
=0,098i6
0200367
0,04520
0,06692
O, ,0B7i8
N.12372
0,11302
0,03773
n,00192
0,07256
0,10115
O 02126
FOQOSZSB
-0,0?941
-9.12165
-0'08513
POQ0°305
-0.08500

10

0400224
w0,68762

w0a07456

=0, 04762
~0404336
90,019“@
0,00850
0413964
0e15014
013249
0409698
0,12276
0el2207
0.09553
Oq 07973
0,07443.
0,06765
0,10674
0404903
0,003%97
0,00783
0400760
0405365
0,07625
0409279
0,23527
0409310
=0,03007
-0,08999
90,90975
-0.11692
P°|122°4
=0,§1369
90!09350
=0,04726
POQO°B3B
0,00732
w0,11679
«0,09897
»0,09997
e0,10614
w0, 05139
=0,04703
=0,06141
-0903573
=0 4,08743
90'05372
!0.0396“
!0.00726
»0e01299
0,0%37406
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Ne03746
=0,00435%
0.01608
=0,00439
'0.02420
=0,02562
0 01000
0,00589
0.00273
»0,01036
=0,01453
=0,01516
~0.02275
=)y, 02563
=0,03542
-09031“3
=0,05006
0402438
-0,0§267
90;07707
=0,07113
-OQqusq
“0,31777
=0416274
=0,10425
«0,05350
-0.0“512
‘0,03“11
-0,0@402
0eDb266
0.07288
0,09763
0.13060
0,16960
N,14875
0919220
0,098532
0.07034
0,07551
0409756
0,10863
Ny10106
005957
D,02741
=0,00341
=04 03587
-0,0““95
'09090“9
-0n,0B8301
0, 07b38

189

TABLE 3 - LISTING OF THE FIRST 20 EIGENFUNCTIONS (continued)

EIGENFUNCTIONS 31 = 20, PDINTS

12
Ne01031

--o,onaes

0,01883
0402614
=0,01051
090447 3
=0403704

-0!06322

QOQOSQQZ
=0,00359
=D 02389
=) 00U40R
beD1RS52
0.03387
0,02865
Ne1894
0a02138
090513“
Da0B40D
Na03484
De01988
0,01724
-0,03238
-0006475
~0,10083
=0409233
-0.10515
=0el10B6A
-0914?75
(e 14878
=0a12864
=N, U576%
-0.01505
0a01186]
05056“0
Ge 05965
006332
de 04892
005506
05”5?75
D UBLHBY
DeGRIEZS

0405774

Nab1esp
~0,03B23
-0, 07757
=0,06603
=0s«NT36B
-0a 04907
?0;0551“

13

=N,05298
=0,06376
~0,07415
-0,07004
=0,07468
-0,05892
=0 0661“
-0 « 06208
-0 06944
-0.07385
=3,06264
=1,05142
=0, 01772
=0,00428
n,N322as
Q,05736
N,0u647
n,03299
07072
0,07472
D,07549
0,07527
0,08256
h,11%26
0,11144
0,060832
0,03959
0,03713
=0,00228
G,00442
N,01179
=0, 01844
B,0172n
H,02876
0,01377
0,03454
O,02222
0,013n4
0,03979
Ne013935
0,06%07
0,05449
0,01795
0.00500
=0,05288
=0,07695
=0,04863%
=0,06369
-N,058933
=0,05424

14

=0, 06590

=0,10204

=0, 08251
-y 06663
-0,04378

=0,02928

-o <0159
-0, 00767
0,027%4
0, 01670
0, 02775
0y 02608
Do 05782

0,06575

0,035456

0,04013

0.,01023

(i,01788

n.03422

1,05084

0,03792

=(},01427
-0, NT-Y4-T
-n 05782
-0 08115
=0,11699
=0,14175
-0,;5798
-0,1503%2
~0,10668
-0,05907
-0,04033
p0.00795
. (3894

n 07752

0,04767

0, « 03873

0, 05605

0,04316

0, 034b2

N,07469

ﬂ,07735

n,02896

N 07176

0,05211

n,05815

N, GH4420

0, 06174

0,07893

ouobﬁua

1 = 50 3 THE: y COMPUONENT

EIGENFUNGTION
15 16
=0, 04472 0,05953
=0,04699 0,02974
-0.08090 0,0304d
=04,08710 0, nasqv
-0,0427% 0,04248
0,00446 06,0285
o_oiqés D,02153%
01202940 0, 00537
0,09904 0,02258
NeNOD9H =0, 01417
01,05915 =0,02352
0,02845 =0,02854
D 04657 =0, oaaax
005445 =0,05625
0.05278 =n, ou426
0.01975 =0,08385
=0,01525 =0,11852
~0.02197 =0,06826
=0.00964 =0,06621
=0,0RB811 =0,07000
=0.11230 =0,05088
=N.12246 0400213
=0.09488 0,03204
-N,03959 0,06154
=0,03549 0,06415
0,00683% 60,0778
Ne0hibd 0, 05680
De11695 0,10293
Ne12611 0,09845
0,11333 0,03958
0=0R901 =0,05997
0,10318 =0, 40504
0-07171 -0q11529
0,02729 =0,1053%3
=0,01376 =0,08851
0, 03867 =0,09548
=0,04165 =0,07756
“N,00951 ~0,02080
004084 0,02151
=0, 06004 u,oaage
=0.06656 0,06292
004892 (,1064¢
-0,03011 0,06025
»0,02286 0,02603
=0,00265 (,02052
Ne01550- 0,029%6
003069 0,06145
N,03204 0,02548
0,03448 =0n,01214
0_00924 -0,01971

17

-0.10501
-0-08112
- 0879ﬂ
=i}y 09231
w0, 01053

0.00858.
Da,00102
002417

Ha02434

=0,02239

0,00657
0403126
0405566
0,04018
0.05563
=0,03397

=0.,02082 -

G.0n86H
=0,02444
=0,02089
=0N,03620
=0,04078

We00772

1402929

0,01589

0,00619

0400786

0,02720

0.00939

0,00867

003436

0.06935

0,06801

DeQOEBE
=0,01630
=0,04348
=0,00e74
=0,02424
-0102555
90'06500
=0,07352
=0.00587

0.02194

0403036

000711

De 03ZH5

O0a06429

0,0366%

Ne050353

0,08578

18
=0,03323

=0 05525

=0, 06041
=0y 06306

=0,08716-
=0, 057“&

=0, 05226
=0, 0“158

0505206,
0,094{12

-(3,00718
90;0;733
N, 006853
0,03877
0,04369
0,06571
0,05979
D,04149
N,06094
0,08591
0,13771
0,18394
04 1“568
0_05599
0,04667
N,00985
=-0,02983
=0, . 02593
=0, 03671
=0,08179
-0_11034
=0,13886
=0,13878
“0,11636
=0,02632
=0.02924
0,01668
=0,00526
0, 01999
-0 03688
=0,01047
0,04650
0,06576
0,03165
0,06858
0, 0517/
=0, 00750

=0 00175

~0,01416

0,02764-

iy

=0,14053

=0,11389

~0406453
0,06795

=0,04302
=0, 08433
a0, 02257
0.01296
=0,01333
0,09225
0.04513
0,02550
0403840
003704
04 n7604
[+1Y 07343
0,01i572
0.05096
0,0;775
0,07516
0!09036
0,02835
=0,006412
90,09223
!0.0“937
=1, 08540
=0,07228
~0,04906
.0'03628
‘Oqﬂaﬂul
=0,05436
~0,03774
=,05661
=0,07000
FO,Oblbq
N,01656
0,02212
0,05537
Ne07665
0.03575
Ne07748
De07918
0,05341
=0,02326
90.10“85
!0g07b53
=0,04485
0,00047
=0,00070
-0,02089

20

02210
001297
0.0 02257
Oq Q5092
0408855
0,05305
0405220
0,05817
0402288
=0,00176
0400344
000775
»0,04218
=»0,00143
0901103
0402603
-0,00714
»0.02038
!0905185
!0,07&95
90,09611
=0,09256
=0,07492
=0,065968
=0, 03968
=0,08089
=0,02846
0,01795
0408902
0,08952
0.14692
(415548
008077
0,06944
0.09837
0506505
002997
04002002
0,01552
000722
90991915
0400873
0,00546
0401971
«0,00928
-OQDISSO
-0,03215
=0,15806
Q0!21790
=) o,23445
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1

=0, 07608
=0,07004
=l 0HHSH
-09096&”
=(e 76041
-0, 07652
=0s07795
=0,07716
-0007755
~(,NB298
whaBYES
=04 08345
(1, 0B550
-0508579
=0,08673
'0!06571
), 08485
“0, 08940
=0,092355
=,08804
-0,08938
=~0,09111
-090835’
=0.08137
=0,08795
-0'08657
=0, 08534
=0,0B384
'0.0753“
=0,07768
-0.07&5&
=0,08098
=0, 08001
=0,07265
=0,07269
~0,07089
.0907207
=0,07166
=0,075014
=0,0735%4
»0,06314
=0,07210
=0,n7878
=, 0793%
-0,U7b10
'0.08155
=0, 07485
007340
=0,07689
=0,07313

TABLE 3 - LISTING OF THE FIRST 20 EIGENFUNCTIONS (continued)

EIGENFUNCTIONS

e

-0, 19949
=0a 1050y
IS LY
-0,111¢€1
-O.llObZ
-0410359
10956
.Ualﬁbql
=le1G757
-G ,10564
010554
-0.19796
=0,10946
=ed1C07
=0, 11050
=G, 11008
-D,11837
g LIHT]
mRa11b52
*0,11904
=0,12079
'0-12653
-0.12@39
-0912155
“(a1294%
-0;12519
'09i1727
=0el1470
~0a11919
=(,1270%
~0uslee?h
‘0,11“}7
-0911720
~0,11629
~NDs111386
mGad1388
“lel1B0U
0,1239¢
*0q13q12
O 14H 7
0410598
“fy 40555
(s 10069
=0e1030h
-0!109Q5
»0peli651
=0, 1648
»0a12313
~0a12855
=(igighB0

3

0.01143
H,01508
Dai12303
D,01634
(01856
U, 02065
G,01203
Ue01i070
1,00913
00325
0,00308
0, 06216
0,000B6
R,0040%
=1 ,00239
N.00013
=0 00088
-0,00303
=0,00256
0,01367
U,01648
0,01513
0 00720
0,00848
Ha01765
=3,01019
=0,01260
0,00359
00064
=0,0000%
0,00139
=(,00139
=0,00187
0,00897
-0,00115
=0,00292
0, 60656
=0,00835
=0,00248
D DURAT
D,02623
0,02955
0,02362
N,02620
Da02T85
0,02600
n,01690
0,01874
0,02366
V03202

g

(o N4809
-0, 04789
= 024344
=G 01500
-(,N1633
=0,02025
-0,01492
=0atr1220
0,00023
w0,01%953
«0,02940
-0,02784
-0!01870
-0, (1544
=0,02428
=l 035AY
=, 048R
-0,05216
w0, 05067
NI YEEY
~0,0U167
-(1,01969
=(,0133%
(i, 01650
w0, 0t54R
=(1,01407
=Ne01577
=0,01735
=0, 00070
0.,08170
0n,02177
0,0333%6
0,0236R
0,01701
N,0135%5
001564
N.01989
.01598
N. 00857
N,00808
elN02H
Ny 00537
=N, 00424
0100620
n,020712
beh2us2
0,00600
Na.)3%22
N,00754
0,01455

1 = 10, POINTS

5) = 100 § THE v COMPONENT

EIGENFUNCTION

5

f,07408

0,08545

e,08692
0.084208
Na07520
006798
N NT480
N, N566H
G,04493
Na15685
0,04939
N,038585
0.,02710
(e02909
N,03986
'0.04325
0,03207
N, 03030
N NDT7HAH
0.00265
-0.00205
w(a2ab0
-0.01254
w(), (2608
(s 05473
-0, 18232
'0.0a513
=N, 05715
=0,06458
'0.0“2“4
. 03590
=0,03173
=0, 00806
=N, 00410
De01248
0, 01077
0a.N115%
Ne01367
0.02487
N.02366
011113
=N,01222
-0 OPHBT
=) e (12501
=0, N0NB3H
-0,00“98
N} 747
w(a0R3507
w(la0)ad7
'0-Q1£7’

]

0.09537
01,100688
D,06914
0,06098
0,05405
0,07786
DL 08080
¢,08584
0,08869
Gl 07084
0,08708
0,07332
n,08247
0,08375
D,1082¢e
0,10935
0,08307
0,67268
De0B121
0,07923
N,07653
De6653
01,03379
(400856
-9903500
=,034099
-0,03387
~0,01573
003037
~0,0UBYG
=D, 0H39H
=0,0783%5
-0,08195
=0,08013
~0,09176
«0,10606
-0,09475
~0,Nh6786
=0, 00931
=, 08551
~0,00904
=0,04798
=0,04701
=0,07140
-0,07088
=-0,08988
-0,08721
-0,07675
-0, 06889
=0,05483

7

0e0%633
0403138
Ne05441
0405933
0a05592
0s04830
0.03958
G,02893
040409
Gel1389
0.00690
~0,003567
~0,00%52
=(,02953
=0,02545
-0,02603
“0,02714
‘0.05529
=(0,04815
~0,03812
=), 02952
“0,02578
=0, 03870
“0,04879
-0.02293
0,00461
0.00523
“0,01678
-0-02056
=0,02317
=0,03%100
=0,03050
~0,01]ﬁﬁ
w(s04027
-0905320
=(,05156
=0,04884
=-0,05189
=(,01236
=0, 0050p
0.,04187
005229
De0pa27
0.05738
G.,07583%
0407529
0.08160
008265
0.0895h
0.,07677

B

-0,08540
-0,06731
-0,08045
n(,09214
=0,09427
~0,11796
=0,12597
=0,09492
=0,07853
=0,10210
-0,09406
~0,10047
-0,10283
~0,09850
=0,0557¢6
=0,04640
-0,04345
=0, 06697
=0,04319
-0,05175
-0,03939
=, 00529
0,0%123
0.06195
0,0834%
0,09586
0,06766
0,06919
D,06908
(,04850
0,03560
Ne,02270
0,02576
0.,03429
ha05412
0.05074
0,07472
0,09184
0,10649
0,10177
N,11000
0412020
Na100%6
e 08451
0.07386
0.06117
0.N6B837
1,05817
D 06113
0,05149

9

“0,08512
=0,0n7121
=N, 07597
-0907871
=0406701
-0,0bbb“
-0.0“8ﬁ7
=0,03020
=N,03351
=0 ,04235
=(,06432
-0906084
=0, 07750
=0,07843
“0,08011
=0.10906
=0,12389
-0912292
=0},10829
=0¢09016
‘0.0@727
=0,03242
=), 00922
2),00363
0.01606
Pe03369
-0,01061
-0.01382
Na00347
14023253
0.N4521
09“720“
0410159
0,14344
De13304
Da15812
Nel2276
Nanvl0e
0.10295
0e11537
0,07919
007513
(1,09149
WeD9268
009197
N,08183
0.07664
1,06345
Be012729
0,04233

10

=0,03010
(401960
=0,03118
=0,03996
=4 05194
=(,05631
=(,03%87
=0,04709
“0,04157
w(,03442
=0),02599
-0,02637
=0402221
0,00520
D.,01504
0s02331
0,04189
V06604
0,08742
U,08977
0el0382
0409199
Da09121
0,07682
007566
De06826
b.040086
0,03782
0aG3729
0,02160
(1401563
=0, 00845
=-0,01027
~0. 02347
=0,02496
w(a,01434
=0.01142
-Ogoblia
-0g06703
«0,06301
-0905739
w(a07473
=0,07256
=0,07081
i du4tsd
“0,02275
-}, 029068
Ne009023
De00840
Neli002
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N 05688
0406320
006452
0,06971
0.050?1
0,02484
ﬂgﬂabpa
0,02494
0,02307
06,01233
-0’00062
0400742
Ny03813
0,04297
0002“92
G401223
9.02575
0400131
90|027b7
90.03554
=0,01423
000819
04 03514
90!06557
=§,01126
0.03&26
0.02295
0402250
0.0}3@5
0401827
De01151
N,00208
P090057b
90.0“35!
90905922
=0,03563
9990“570
90903603
=0.02404
!0.0575@
-0,06259

- wDa 02755

!0,01“25

0,08043
!OQO;BDQ
.09016“1
FOQOOQSI
90g02175
!0.02335
~(402248

EIGENFUNCTIORS 11

12

=0a032294
=0 ,007%3
‘0-03905
n,00172
0,00595
001009
o)y 02753
=0, . 05569
'0;067“5
=0, 09260
-0, 08848
=04 5497
-0.0 1844
=iy 01le
0w 00551
UpUlGD)
Ng02994
006487
007947
ali7203
0,06d64
Ne0BO4T
0403823
0a 00948
0,0339p
De 005*6
Ne06%4)
006393
DelC1ts
0408333
UQOS?BE
0,03039
ve00212
Deb18BY
Ua0G3/2y
0401906
-0.01701

=4,04824

-0.0&815
-QQOBBQI
90;08?93
=Dl
=0,09811
Pﬁg077$5
=0,03219
'0502340
=0, 00046
Ne02653
Na0049y
Delis229

191

TABLE 3 - LISTING OF THE FIRST 20 EIGENFUNCTIONS (continued)

13

=h,02%21
U, 00567
M,N2219
2,01144
0,02020
N,00421
e 00093
Na,0028%
N, 03434
0,03857
H,03400
0,03472
0,01679
002313
0,05008
G,01867
0,07382
0,06515
0,01470
0,00453%
=0,03287
-0 06907
=0,06153
-9,05731
=0,08087
=0,n5248
-0,G3801
=0,03341
=0,01362
0,00864
Na05047
0,0483%5%
n,01003
0,00404
0,02829
0,00221
=0,00501
=0,03122
=1,01836
(G, 00737
U,N1689
0,03972
h,06217
U,04d140
0,01681
0,001690
0,00946
Wa00329
0,00936
0,00198

14.

=G, 13979
!0.14285
-N,13783%
(i, 15524
=0,11874
=0,14003
-0.10400
~0,07151
-0 , 05409
«0,052453
-0_017/9
~0,0)128
N,01721
0,05619
0,05542
DaUBETE
0,07250
0,09419
0,0G9660
0,10G54
0,11874
ﬁ.nalzb
0,09052
0,11590
0,14759
0,12490
G,09585
0,06535
0,04913
0,C65700
0,04620
(1,08993
N,06441
0,01854
=0,00562
0,00540
0,00345
-0 0“710
90901530
~0,02754
=D N3260
=0,028%7
D263
-0, 00868
-0,05234
-0,08993
=-0,12022
-0 13094
w0g11317
-0,08873

= 20, POINTS

51 = 100

EIGENFUNCTION

15

Ne04338
De01617
NeD1H15

0,00622

0422933
Ne00250
~0,03389
~0. 05447
0,00085
ne01307
0,03291
=0,00556

=1, 0354660

=0 0346]
f,02225
0,02502

_0903569

=0 06405

-0,05861

=0a061067

-0.0“952

»Ne017H2

0.07749
0.120589
138546
Nalk224
0.1263%4
0420796
D.2nb36
0,17941
f.15614
Ne09279
0e.02961
=0, 0233}
wle 03874
90,0&012
=0.03601
-0,073542
=0.,10108
.OQ127bq
‘011!100
008640
»(),05643
=0,06825
“0,075684
“0,08051
‘6,10361
-0906901
qO.Q?ZEV
=(s 06243

i6

0,023714
006357
De 08155
(107683
u.oaanl
04231
0.0270/7
B,02513
00809
wa00447
=0,01391
-0, 05653
-o,oa9oq
-N,08016
=0,05483
-u.CﬁEB?
=0,13487
-(,15082
-0,13%11
=0,15579
~0,13729
-0_05579
"D,GSbOi
G.02018
006844
Ge11036
(a10917
031941
0,11039
0,065503
G 67655
011746
0.1276@
0411815
007379
0a00393
-0,05847
=0,07869
-0,01999
“N 05176
=0,05445
=(),02208
DaGi1263
-0,02326
-0_01754
o,ooess
=0,00596
=0,00143
-0,01829
“0,02042

t THE v COMPONENT

17

-(1.03005"

=0 ,02942
He0242}
003872
0 02446

90904156

=0, 04200

=il dy748
o00BET

=0,04378
=Q0,02906
=0,0gbk2

.0901520
0s00164
0,02458
u.uﬁ?gﬁ
N,0pB6Y

=ha02412

“Q,02742

-0001366
0,01248

=0,0082%9

=0,01458
=a0146%
0,04730
0,00669

»1,03659
0,03310

=0.00d470
0,04247

“0,00597
D,01908
0.05297
U,05881¢
0406945
0,06557
0,07190
0.00072
0,01623

=0 6035%

-0,00139
0,03483%
0,01147

=0,03579

=0,07132

«0.,0501%
0.00098

~0,01920

=il i957

(05457

18

0,00472
0,02092

Oy 09733

0y 09058

0,09594.

0, 07557

Q , 05622

« 01847

0 05727
OabBb
-0_91011
=0,0N4829%
~0,03304
=0,05879
-0,03136
“0,05767
=0,04250
-0,0622%
=0,05348
-0,04761
=0,01705
0,00856
G,02158
0,08216
«12635
0,1385%
0,15398
0,08314
D,06067
0,02191
0,02900
=0,01867
=), 055586
-0,09414
-0,09609
=0,006779
=0,07033
-0, SNU6T8
-0, 0546)
-u.06596
-0,00284
=(,08107
=0,00101
-0,01382
-0 ,0U4797
=0,065%7
=0,05120
=N, 04695
-0,05407
=0,02816

i9

0.,04154
0,01358
D,02345
.0.91912
=0 ,05452
=0,03602
0, 00041
=0, 01¢40
O L01396
0.02842
N, 05750
N400559
0.,01011
NaN0603
-0,00695
~(i,0i083
-0, N4375
»(1,05486
-0.01326
=0,02691
0.00263
=), 02451
=0,07d42
'0@073“8
“(l,09822
() ,05606
0,00616
D.05253
e01199
“0,0H4229
=0,07679
~N.N6BBY
=0,12476
-0,09070
w3, 06560
=N.07556
=0,041%2
-U.0Q050
N,00158
N,04759
Na0074d
Na08075
N,084063
0,0659%99
0,08792
0'09109
0,10069
0410969
Ne0B703
0.068352

20

0e01144
=la 0108
=0,03354
=0, 00746
=0, 05353
=04 05983
=0,03722
=0,00382
0,03761
0,04339
Ne02224
Da01611
0,00913
Na00389%
(e 04002
6.02385
0.02719
100529
NeliN0N46
=(a04227
«0,05782
0206009
0,03151
0, 07647
0.0094%24
0,0484]
=0,07603
0o B2UY
-0'04502
=De 04861
«a 06550
-0,04058
=0,03539
=0,04572
=1,03%121
=Ne01722
0.01649
DalB741
009193
WY
002757
0o 06258
Nel0h158
1a03471
=0,00387
=0,0238%5
-Oqﬂzabl
-0;03524
004011
-0,06932
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1

0. 0B600
0,08946
0,08826
0,08902
0.09047
0,09276
0,09660
0.10089
0.,10308
010679
0,30651
0.10934
0,11324
0,10907
0,10764
£,10999
0,10875
0,11218
0,10853
0e11732
0,11330
0e10745
0,10546
0,09849
0,08851
N,09134
0,10443
0,10760
0.11196
0,11382
Ga116B8
Pe10934
fa10858
0,10710
0.11014
fle11510
0,12037
0,31868
(1.11854
0,12790
12178
n,11682
0.10921
0a16826
0,09999
0.09875
0a10490
fe10188
010263
0409859
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-0,07741
=0,07105%
'0907?59
«0,08000
=0,08799
-(,083%12
D, 08408
=0,0B48S
'09@6612
*0,09369
!0909959
=0,068652
0, 08964
0,08918
=0,0912¢
=0,0B73)
=N, 06656
'0995745
=0, 0770}
0. 07519
(1,072
=0,06316
~0,05040
-N,04%64
~0,05985
e 06545
“0,063533
w6217
=0 062753
-0, 06323
=N,06106
=0, 058340
'0.05531
“h,0u4b59
-0,(4u07
=0, 038040
-ngﬂllb
-0;0“272
-OQOQQ35
-0 05186
=0,053%73
"r).ubl?]
=0,05489
«0e 0576
-OQOEﬁEb
-0g057“5

TABLE 3 - LISTING OF THE FIRST 20 EIGENFUNCTIONS_(continued)

3

D.07562
0.08128
0,08379
0.08532
0,07999
0,07994
0,0R384
N.NB8001
G,0771%
0,06979
0,N7081
0,06154
H.,07078
0,07060
0,0669%
D,06020
0,056R3
0,06516
N, 06043
h,08127
0,04539
h,03119
J,N3647
(,02065
0,01134
0,02568
0,01553
0,03049
N,02n%9
0,01787
G, 00234
N, 00283
Va01i88
02403
0,03699
0,0U3R3
0,05674
0,053%4
0,05399
£,05439
0,06969
0, 05244
6,05976
U, 0k349
0,06415
005467
U, 03309
wa03882
0,03824
Ga01d362

4

0,08443
N,0769
0,06700
0,07255
0,07736
n,08178
0,08721%
0,08088
1 e 0TCES
(1,07173
D,07404
D,07977
G,06682)
06163
G,04358
0,02572
n,03574
G,03873
0,04758
0,03416
0,02757
D,N22586
0,02665
0,01585
0,00842
=0,03224
“D, 04167
-0,04b4B
=0y N6H03
-0,06072
-0907557
=0, 062U
0 U734
(g (09309
“0,08913
“0,10843
w0 10461
-0,10808
»0,11105
=(1a1 248D
-y 13649
=(,1U385
-0,16532
-0,15429
-0,14023
~0,14844
0413735
=0q15488
“,14094
~0,13367

1t = 10, POINTS

1 = 50 8 THE U COMPONENT

EIGENFUNCTION
5 6.
0405637 =0,09798
=N405877 =0,0984%
m),07093 »0,09637
»0e 06657 =0,09813
=0,07871 =0,10165
“0,07279 =0,09125
=0,06469 =0,07929
=0,07941 =0,06886
“0,09543 =0,04663
»0,09797 »0,02975
=(1,09570 =0,04779
=0,07743 =0,65249
=0,07402 =0,04585
=N, NB554 =0,02%65
=0,07158 =0,00854
“DeN71B3 D,01697
-0,09661 0,02472
'0,06“96 0'03399
=0, 07370 0404299
=0,07072 0,02443
«0,0R1RS 0,00410
=0,0B776 D,02672
~0,0R153 0,03543
=), 04939 N,07511
=N, 05730 0,08921
=0,06250 0,09066
«0, 02866 0,10413
=0,00043 0,09601
001568 0,10173
“0,00836 G,07841
~eNORT8 0,045R8
=0,0161) 0,05179
=0.01815 0,01251
=G.u2289 =0,00043%
0.00832 0,00775
N0,02739 0,0n1933
0,03664 0,n2B68
003295 0,0$704
0.,02865% 0,00235
0,039%8 =0,0806)
De0607E =0,01653
OQOblnl -0.025”?
0,060487 =0,01990
008420 =0,014829
0.09616 =0,01250
Ns11655 0,0181¢
Na12401 0,01224
NeJ 1683 0,00752
0.09595% 0,011853
0.N795%0 D,01327

7

=(0.05196
=0,083%3%
=0,0853%1
=), 17565
-0’0757ﬁ
mw(, 06434
=0,05539
~0,05295
»0,07084
=(,05719
.0906157
=0,06316
=0,06416
~0,04665
e0,031785
=0),01553
-0900702
0,01819
0.,04540
0,04313
0,04667
0,06727
0,06796
0,05051
0,06897
0,05052
0,01914
0.08718
0,04007
0s03108
0403474
0,04522
003692
0,04322
0.03985
0, 6788
1,04759
De00454p8
D QUTHT
0,05389
Oa04122
002634
0,025%94
N,02744
De121H
0,00051
01774
~0,02258
=(i,12699
»0,0130¢

8

=0,10021
=0,09487
=0,04756
=(,03345
=0,037306
=0,06110
~0,08143
=0,10841
-0,09563
=-0,11337
=0,11630
=0,09220
-0,10036
=0,10742
“0,11040
=0,N833)
=0,05%105%
“0,06197
-0,02786
0,00529
0,03075
n,01022
0,01576
0,01519
0,02853
0,02550
y,01427
0,01798
0,02505
0,03368
0,055%0
0,09601
0,09472
0,09733
N.16242
0,11506
n,1i417
0,09121
0,07694
N,NB477
0,09691
0,06036
0 05867
005787
0,02777
0402991
0,03802
-0,00517
0,00433
0,01193

9

=0,08565
=0,08679
=0,1199]
-0.11229
«0,103%58
=0,08850
0,08668
=0, 04376
N,n0252
0,02540
N,03681
e 02424
0,02484
N,02933
0,02685
Ne03912
0. 03856
f,02636
0,02300
0,0i686
0,01889
003455
0,03416
0,06945
0,05313
0,01480
=0, 01807
0,02455
003977
0,06086
0,03848
N.05634
0,04859
0,03296
(1403948
=0,00341
=0,01051
=0,02262
=0,04B862
“0,08438
=0, 06874
=0 01418
-0,01742
=0, 02812
=0,01988
=0D,00796
0,00073
=0,00251
D,060676
0.,01513

10

=0,08500
=0,07833%
-0!06447
(), 06650
-0,08198
"0,07537
!090“005
=0,05933
=0, 08265
=0,060612
e0,06224
20407262
=0,05458
=0,03600
0,00167
0, 03343
0405160
0410008
0412699
0,13764
0,15187
019174
0,16943
0155114
012156
0,09192
0,08504
Nel3579
0,16896
De12386
Deln503
010989
0,08735
0,06369
0.,01201
Na00042
0.,00596
Ne00044
-0,04187
=0, 06058
!0910723
~0,08814
=04,1162¢2
-0!13093
-0,12888
=0,1433%
«0,15082
=0,12184
=0412253
-0.1“28“
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flqltbe7
9090Q°26
-0, 04917
-,02942
=0,02980
!090237q

=Qy0175e

!0908537
=0.04823
.0,02950
'0'01615
.0003529
=0,02803%
Ne0inu9
0,06268
0,031h3
0,08m44
-0;09171
=0,01381
0,07%04
0. 07570
0443536
0411576
=0, 00598
-0,01026
0,01222
0e018H9
De03224
=0, 02359
-0,16921
“0,28446
POQ?B‘IQ
=0e23209
FOQI?EO’
-0g19272
-0,08564
0.,05754
0,02590
0,01105
0,03695
=0y03756
0,02313
0,11653
0,20281
0,22151
0422464
0018157
(e193%6
0.17056
0,01031

193

TABLE 3 - LISTING OF THE FIRST 20 EIGENFUNCTIONS (concluded)

EL1GENFUNCTIONS 11 = 20, POINTS 10t = 150 ¢ THE w COUMPONENT

i¢

=0,1988;
=el1696Yy
=), 05849
=0, 03h42
0.,03074
0.i250}
Ne.17024
N.182e2
DdeBUOR
Na09770
'0,02745
-0.1437%
=0,19472
'0017530
“0,11797
P YAL!
=0,07232
De0630}
0.13070
D.0RBBY
De128b2
0415553
Neibney
=0 a0R17}
-0,08393
=0e1013p
0o 0RSBA
0,09013
DelB60(
N.23103%
013273
G,02249
-o!;uns
-Oolb§b”
~0e0n224
0403539
0.02209
~0,URT751
=D 05687
=0s0505%
!0-03;35
0,01880
?0.02?57
-0,05299
006731
=0,03583
=0 07757
=0,10422
=0e10204
005298

13

0,14119
0,14633
0,12257
(. 01806
0, 0R140
=-,08023
=i, 05585
=03,08415
=0413553%
=.,21427
=0,19884
=), 0UB62
=N, 05334
-, 05580
=0, (153R7
=(G,02150
0.,0%028
Q017606
N,n3378
N,14d226
0,1457%
,N8999
N,04180
N,n0nNd4
-0,07982
-0,11978
-0,00064
0,10484
0,1663)
V,14896
10503
Ue17800
e 16907
N,13909
G,10041
0,n4859
=0,12566
=0,15821
=0,1706A8
=0,19780
=0,27091%
~0,21497
=-0,08095
=0,01951
V,02618
0H,09186
0,12392
N,14140
. 04,17120
Ne.1B126
=0,06990

14

N,18613
0,12483
N,03769

-0, 03023

-0,04%42

«,U7718

-0!05120

=0,04322
Ne00130
0,02445

=N 01677

-l ,070bB

=1, 04039

=), 04024

-0, 07295

=lha0t2/1

«(,00727

=0,01842

=0, NB783

-, 120495

-G.01968
D,03873

=0,12669%

=0,1405%
0,06572
0.20267
N.06218

-0,14038

ela,20443

=0 ,04664

«0,06090
0,04/25
Nelndee
(1417593
D.11923
D,10559
0,03299

-,07414

'n|11700

=0,05206

=0,04779

-0,“0025
LYY
N.0bbGE
0,06734
0,05893
0.,00109
0, 08997

D,03662

-0,04472
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=1,08963
008197
NaN64H2
N.03893
s 08115
N.06085
008160
'0-03659
'0910752
'0.19086
'quﬂqﬁa
0 D246
'0.0“160
D.02386
0.07985
0.16152
0.08499
=), 2401
=Nal0070
=) 0R3HA
N.00675
“N 402516
=, %958
=0a00271
“0,00695
=) 03400
D.06R45
Ne1nH82
N.23190
Nel12139
012175
na 06307
), 095H9
005409
NeB7155
=Ns0254])
“0a07590
=0,10953%
=0,10544
“Na102351
0.02192
NeD7HHD
0,!1500
N.0925%2
De05107
N.00899
-0 09449
~0,197514
“0.17411
=0, 05179
005954

16

-0,09413%
“0,07028

0,011086
=0,06073

-0, 06235

1,03135
He07408
N,12860
0,08541
0,02794
=(,01456
D,0349b
=0,04528
=0,01190
=(1,03065
=) 4 02H54
N 01721
=1 ,02383
~0,04168
=h,02672
=0 407551
D,18346
N,10364
«0,01839
N,03023
0,n7381
“0,169%4
~0,18464
=0,05/8¢e
=0400t0/
=0,05709
1a00848
Da07905
0,11443
0,06301
0,13538
0418551
003545
=(,1U4160
~0,20601
“N,30438
=-0,19666
003567
0,126888
0,02738
0.,0n0082
0,01480
Da10315
0a10977
=0,10501

17

0401297
Da16882
Deli969

6,00575
=},013922.

=0,08046
=(,13642
=(1405750
0.06086
Ne11363
022602
Na.266356
0,14719
=i}, 03388
=0,11088
=) ,21758
-0,27231
=0,22832
=(,107062
=0,06906
He13063
0.27644
0,.19544
«0,01852
=),00099
=0411014
=~(,21684
=0.,09281
Hal6B74
1419001
0.,0910%
~0,04164
-U'l7952
=N.12198
«(,00%95
=0,01949
=0,07916
U,006178
=0,02905
008363
006994
=0,063%8
=0,13468
(s 05872
0,00664
Geli3db2
0.102%6
0.04366
0,01454
=0,03323

18
N,02248

t,11868:

0,06269
000725
=0,14716
(504837
0,05901
-0,06188
-0,07720
-0,0$515
0,00432
-0, 08655
N.01912
0,19345

- frga10232
=0,01720

=),02976
0,06290
N,14493
G,16261
0,10525
=(,11046
=0,14985
=0,15590
=0,04789
0,05151
(,0195%2
=0,07846
=0,01514
=0,036852
0,11122
(1,08364
0,02130
=U,15968
=0,148n7
=0,22937
=0,12290
0,03511
Ne18611
1,29623
0,06454
=0,01712
=0,11390
=0,08756
0,004n07
0,19550
0,14139
0,00281
=0,00%60
=(,09821
=0,14053

19

=0,10424
“0,18638
=0,12641
=0,11335
0402531
0,09259
Ne (17830
NDe01581L
-0.00260
=0, 08807
0.01090
0.08620
Na13511
Ne14555
Na23246
0423240
N,06287
“0,27349
=0,17154
=0,11578
0,04790
N, 06026
0,04249
N,08737
Q406137
=0,19862
=0,21904
=0,12775
=0,05243
N,12898
0e13503
0,03325
1410796
=N,05114
=) 04219
=0.15681
De00278
=(,05%60
=0a1225%0
De05082
N.038720
ne0%212
N.06021
NDe11633
halé561
e BRSS
~He09223
=0,02390
=0, 06997
Neficlf

20

0401249
Dy09087
0.18617
-0y 00125
0,00997
0411485
0416564
!0.91270
0415774
=0,120646
-0.07“86
0,08201
0,18128
0e12797
-N, 05584
=0,11522
-0;10915
0,08709
0,11476
“0,02055
«0,01013
=0,15444
0209699
0410997
-0,07494
=0,19740
(,012206
0418935
D.0B918
DaN6S8Y
D,08088
=0 409252
=) 06196
Neld224
0,13488
0400677
0,03751
=0,03863
=0,02406
90.12“99
=0q426212
.Q,17709
=l,13030
De01947
0.10825
De02443
w(l, 04999
N.00000
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5.2 The Sampling Properties of the Expansion Coefficients

Forming a 100 X 150 matrix F of the 100 ensemble functions and a
150 X 20 matrix E of the 20 first eigenfunctions and performing the

matrix multiplication
FXE=38

gives us the 100 X 20 matrix, B, consisting of the expansion coefficients,
o . A histogram is then calculated for each of the 20 columns and the
corresponding probabllity density function estimated. The goodness of
the fit can be tested by various tests.

In this analysis, a subjective study of the histograms revealed
Gaussian probability density functions for the expansion coefficients,
so that the only statistics necessary are the means and the variance
of the 20 columms. If we had prepared the ensemble in such a way that

E{fn} = 0, we would have had

E{o. } =0
n

(5.2)
E{anak} = Ans

nk

and due to the Gaussian assumption all the probability density functions
would be known, in a statistical sense, because An’ which equals the
variance of the nth expansion coefficients, is known. 1In this analysis,
the relation (5.2) provides an internal check on the calculations because

for one expansion coefficient, the variance plus the squared mean must
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equal the corresponding eigenvalue. Table 2 gives the mean and the
variance for the 20 expansion coefficients. As would be expected,
only the few first have a mean significantly different from zero.

The mean and the variance for a particular expansion coefficient
are only estimates of the true values, and by standard statistical
methods we can obtain 95% confidence limits for both quantities; in the
application of the model we can investigate the effects of choosing
values inside as well as outside these limits.

The apparent Gaussian distribution of the expansion coefficients
needs further discussion, especially since Smith (1971) reports he found
them to be uniformly distributed.

When the domain of definition is extended to (~~,®) and R(s,t) =

R(s-t), then (4.3) becomes

j R(s~t) ¢n(S) ds = Xn¢n(t)

but in this limit the eigenvalue spectrum becomes continuous, and we

can write

o
J R(s~t) ¢(w,t) dt = A(w) $(w, s)
—c0
with the solution ¢(w, t) = e_iwt. Hence, A(w) is the Fourier transform
of the correlation function, the usual power spectrum. And so the
expansion coefficients become in the limit equal to the usual Fourier
coefficients, which for all practical purposes can be assumed tp have a

Gaussian distribution.
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5.3 The Probability of Occurrence

A direct assessment of the probability of occurence of generated
time sequences which are critical to the system being studied is not a
straightforward procedure with the model developed here.

However, in order to analyze the problems let us consider the
theoretically simpler model in which an ensemble of k records each of
N points, k > N, with the correlation function R(s,t) has led to N
eigenfunctions each specified at N points and to N probability
density functions, one for each of the N expansion coefficients
al, az, ceey aN;-:Artificial time histories are generated using the
eigenfunctions and by sampling in the probability density functions.

The generated series will also have the correlation function R(s,t),
and the first probability to be determined is the probability that the
systems we are concerned with will encounter turbulence with the given
R(s,t). This probability can presumably be estimated by considering
the measured ensemble in relation to the total collection of empirical
data about turbulence.

The next probability we must determine is the probability of ob-
taining a critical time sequence by sampling in an ensemble of functions
with the correlation function R(s,t).

Let us assume that all the critical functions with this correlation

function are in the subspace QA of the total phase space {, where

X (al f_al f_al + Aal, sees Ay S-GN f'aN + AaN)

Q:  (-=< G < ® eain, m@ <O < )
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Here Prob(al,az, cee Oy € ) = 1, .and the probability we want to
determine is Prob (al, Oos oo aN € QA). In order to limit the
seirch for QA, we realize that we are only interested in probabilities

that exceed a certain limit, P_ say. The part of  in which the

E
higher order expansion coefficients differ significantly from zero
is very likely to be associated with very small probabilities (see

Table 2), hence it is justifiable to search for QA only in the space
QB ~ (al, Ops e Os Oy = 0, ..., Oy = 0)

where the limits for al, cees am are connected with PE.
Suppose that in addition to the lack of correlation expressed by
(5.2), the coefficients are also Gaussian distributed, an assumption
justified in Section 5.2. Then the coefficients are independent and
after having established by trial and error the boundaries of QA the
probability we are searching can then be estimated from the Gaussian

probability density functions Pys Pys +ee P

al+Aa1 a2+Aa2 am+Aam

Prob(al, Ops eees O € QA) = J 1 dal J P, daz J P, dam

a a

a 2 m

1

Mainly because of computer limitations, we are forced to generate the
time-sequences in small pieces which are patched together and then to
perform transformations in Fourier space in order to move energy to low
frequencies. Hence it is obvious that the above described procedure for

obtaining the probability of occurence of critical time sequences cannot



198

be applied to the model formed in the preceding sections. We will
have to rely on physical arguments, not as much to calculate proba-
bilities, but merely to establish whether the generated critical time

series appears to be physically realizable.
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6.0 DESCRIPTION OF THE TURBULENCE RECORD

The turbulence record was obtained by analog instrumentation during
the 1969 Kansés Experiment by N. E. Busch and S. E. Larsen (Larsen (1971),
Busch and Larsen (1972)). It was measured at 5.66 meters height
(between 15:31 -~ 16:31 on 30 July, 1968). The stratification was
slightly unstable, the Richardson number being -0.101. The mean wind
speed was 6.56 m/sec and the variances for the fluctuations u, v, w, and
T (temperature) were 2.414 mzsec—z; 1.904 m2 sec—z; 0.359 m2 sec:Z;
0.761° Cz.

The analogue signal was later digitized at 1000 Hz and transferred
to digital tape. For the purpose of this analysis, the signal was
further block averaged over 100 points to give a 10 Hz signal. A
sequence of 50 minutes was selected giving 30,000 data points for each
of the components u, v, and w (the temperature data was not used in this
study). Figure 6.7 shows the whole record with 1 second block
averaged values, and Figure 6.8 shows 100 seconds of the record with
10 Hz values. 1In the last figure, all the data has been normalized
to mean zero and variance 1. The analogue signal was reversed in time
during the handling and so we will expect our model to generate time re-
versed turbulence. A simulated record should then be time reversed
before applied in practice.

In order to assess whether the generated turbulence behaves like
real turbulence or not, a set of criteria were proposed in section 1.
One of the criteria requires the model to produce signals that possess

the notable observed statistical characteristics of observed turbulence.
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In the rest of this section some of these chai ‘cteristics will be
estimated from the turbulence record and the r ° .13 will be compared

with those obtained from a similar analysis by Duf:ton and Deaven (1971)

(hereafter referred to as DD).

6.1 Probability Densities and Distributions

The use of the probability functions is extended to powers of the
velocity variables, here to the fourth order. Figures 6.1 and 6.2
show the probability density and distribution functions for the
standardized velocity components. In each graph, the solid line

illustrates the Gaussian behavior with the curves for higher orders

derived from the transformation
dy) -
Py (n) Igxl = P, ®
DD reached the conclusion that the frequency functions departed
from those of a Gaussian process from a set of figures which showed a

behavior quite similar to Figures 6.1 and 6.2.

6.2 Increments

Using one of the component series, for example u, we can construct

a new series

(6.1) u(x,L) = u(x) - u(x + L)
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Figure 6.1 Kansas turbulence. Probability density and
distribution functions for the first and second
power of the standardized data. The Gaussian
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by means of which we can analyze spatial variations in the turbulence.

The timestep At = 0.1 sec is transformed into a length step Ax using

Taylor's hypothesis: Ax = uAt = 6.56 m sec_-1 0.1 sec = 0.656 meters.
The structure function, Figure 6.6, is defined with these

Increments as
6.2) D) = E{u’(x,L)}

and it should be dependent only on internal conditions of the flow.

The statistical properties of the increments are important in
several ways. First they characterize the spatial variations in the
turbulence--hence the distribution of increments provides insight into
the uniformity of spatial structure of the velocity fields; second, if
the series u(x) are Gaussian, the distribution of increments would also
be Gaussian; and third, they are useful in the study of whether the
data is self-similar in the sense of Mandelbrot as described in
Section 3.

The probability functions for the increments are shown in Figure 6.3
and Figure 6.4 for lags 0.66, 6.6, 66, and 666 meters. Again, the curves
are very similar to those given by DD, demonstrating that the Iincrements
with small lags deviate more sharply from Gaussian behavior than the

increments at large lags.

6.3 Measures of Intermittency

As argued by DD, the non-Gaussian behavior appears to be intimately
related with the intermittency of the turbulence and they provided fur-

ther measures of the intermittency. Dutton, Lane, et al. (1969) define
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an intermittent process as a process where a relatively large fraction
of the variance is contributed fy a relatively small fraction of the
total record. DD then considered how moments such as the variance,
skewness, and kurtosis accumulate as a function of the fraction of
the total record length. These statistics are shown in Figure 6.5. The
numerical algorithm can be thought of as a process in which the record
is rearranged so that the observations are ordered by size; the
curves are then obtained by summirig the appropriate power of these
observations and plotting the result against the fraction of the
observations uggdl}n the sum. DD showed that the same curves can be
obtained from t;e probability density function as follows:

The fraction of the 2mth moment (m = 1,2,...n) contributed by

observations with absolute value greater than ]yl is

-|y]
oo
F, () = [ J " p (x)ax + J =" p (x)dx]
—0 . [¥]
Fon ()= N —
1 Py Gaxl™

and the fraction of record occupied by observations with absolute value
greater than |y| is
=|yl oo

RZm(Y) = J py(X)dx + ]Py(X)dx
OO y

For odd moments we have the contribution by observations with

values less than y

PRI
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Y © , -1
J’ K2l py(::)dx [ J x 2ol py(X)dX]

-—C0 -00

F2m_+1 (y) =

y .
'R2m+1(y) = J py(x) dx

-00

Thus, if the density functions py(x) are known, then both F and
R can be determined as function of y and so F is known as function
of R.
Also, these figures are very similar to those given by DD with
only a slight departure from the Gaussian case for the variance and
a distinct deviation for the skewness and the kurtosis. The difference

found between the components can also be found in some of DD'as figures.

6.4 Exceedance Statistics

Among the various exceedance statistics that can be used for
studying statistical structures, DD choose N(y)/N(0) which is the
ratio of the number of crossings of value y with positive slope per
unit time to the number of crossings of zero with positive slope.
Figure 6.5 shows N(y)/N(0), and again we find the same behavior as

found by DD.

6.5 Spectra and Covariance Functions

The analysis of turbulence relies heavily on the theory of second
order processes, the covariance function being one of the most important
characteristics of such processes. From the covariance function, a

generalized spectral representation can be obtained, as shown in
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Section 4, where the shape of the eigenfunctions can be argued to

' bejéf-some éignificance. Further, the eigenfunctions gave a unique
'representation of the cofrelation function, and in the limit where we
éould assume stationarity and infinite integration limits, this
rgpresentation produced the well-known fact that the correlation function
and the spectrum constitute a Fourier transform pair.

By means of correlation functions and spectra, the analyst is able
to investigate the sequence of eventé throughout an enormous amount of
data by looking at smooth curves. Although ‘the correlation functions
and the spectra contain the same amount of information, the spectra
are normally best suited for a subjective analysis because they reveal
how the variance (or the covariance) is distributed over wave numbers
and hence how the energy is distributed on scales.

The autocorrelation functions Ruu’ R , wa and the cross-

Vv

correlation functions R_, R , R are shown in Figure 6.6 on a
uv’ uw’ VW
logaritmic lag scale. As found in DD, the correlation of the horizontal
components u and v is higher in the midrange than that of the vertical
component w. The Ruw function shows the expected behavior to tend

to a negative value significantly different from zero at small lags
indicating a downward transport of horizontal momentum (the Reynolds
stress). Also shown on the figure is the structure function D(r),

where for a spatially homogeneous process, the relation between R(x)

and D(r) is easily found to be

(6.3) - D(r) = 20% (1 - R(x))

a relationship that can be seén to hold well for the curves in Figure 6.6.
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The spectra Su, Sv’ Sw and the cospectra Suw are shown in
Figure 6.7. The most pronounced characteristic of the spectra is the
-5/3 slope exhibited by the u and v components over one decade of
freqﬁencies. The w component 1s seen to flatten out at low frequencies.
The cospectrum Cuw gives the wavenumber decomposition of the Reynolds
stress responsible for the transformafion of mechanical energy and hence
is an important statistic to model correctly. The cospectrum de is
seen to be significantly different from zero at frequencies 0.01 - 1,
indicating the active scales in the downward transport of momentum

to be of the order 600 m to 6 m.
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7.0 TESTING AND FURTHER DEVELOPMENT OF THE MODEL

Two experiments with the model are discussed in this section. The
generation of the turbulence follows the generation scheme given in
Section 5.3.

As a first step we choose to generate the series in sequences
of length 30 sec (= 300 datapoints). This is six times the length of
one of the component parts of the eigenfunctions and our choice is
obviously motivated by the way the ensemble fn(t) was constructed. In-
side every 30 second interval we construct the turbulence in pieces of
5 seconds. One of the pieces, selected at random, is created as active
turbulence and the five other pieces as passive turbulence.

The differences between the two experiments are as follows:

1. The uniformly distributed random series consisting of integers
between 1 and 6 which give the position of the 5 sec active turbulence
piece inside the 30 sec sequence is sampled for each experiment.

2, A Gaussian distributed random series is sampled to obtain
the expansion coefficients for each experiment.

3. In experiment 1, the mean and the standard deviation for the
expansion coefficient distributions are the same as given in Table 1.
In experiment 2, the standard deviations were changed to (01, 02, 03) =
(8.0, 8.0, 4.0).

4. The alteration of the expansion coefficients in the five
passive intervals was done by multiplying each of the three first
expansion coefficients by a uniformly distributed random number

between 0 and 1 for experiment 1 and 0.5 and 1 for experiment 2.
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In both experiments, the third expansion coefficient was, for
every 5 sec generated interval, multiplied by +1 or -1 picked at
random. The justification for this procedure lies in the shape of the
eigenfunctions and the distributions of the expansion coefficients. It
follows from Table 2 that in contrast to all the other e#panéion
coefficients a3 has a much larger mean than standard deviation, implying
much greater probabilities for obtaining positive rather than negative
values. Figure 5.1 shows that most of the contribution of the third
eigenfunction is the peak in the w—component, which inldreating of the
ensemble fn(t) was chosen positive. But we want to generate negative
gusts as well as positive, and therefore the + 1 multiplication of a

3

was introduced.

7.1 Statistical and Sequential Characteristics of the Two Experiments

Some 8200 datapoints were generated for each component for each
experiment and then subjected to the analysis applied to the turbulent
record in Section 6. The result is displayed in the Figures 7.1 - 7.18.

The probability densities and distributions in Figures 7.1 - 7.14
show no }arge deviations from experiment 1 to experiment 2 and a
comparison with the Figures 6.1 and 6.2 reveals the generated turbulence
to exhibit the expected non-Gaussian behavior.

The distribution of increments at lags 0.6, 6, 66, and 666 meters
given in the Figures 7.5 - 7.8 all show the turbulence behavior from
the Figures 6.3 and 6.4 with small lags deviating more sharply from

Gaussian behavior than large lags.
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The accumulated moments as given by the Figufes 7.9 and 7.10
show some differences from experiment to eiperiment to the actual
turbulence, Figure 6.5, but no serious discrepancies. This is also
the case for the exceéddance plot.

The auto- and cross-correlations and the structure function,
Figures 7.11 and 7.12, do not differ much between the experiments.
From experiment to the actual turbulence, Figure 6.6, there is,
however, one discrepancy; the experimental u and v fall off much too
rapidly.

The relation between the correlation function R(T) for a statiomary
time-series and the correlation function RT(T) calculated over the

length T is given by
7.1 RO = r(w Q - Eh

The generated 5 sec pieces will on average have the same
correlation function as the ensemble from which the eigenfunctions were
obtained. This ensemble was obtained from the turbulence record, and
although it is not justifiable to call this ensemble stationary, it
seems that the transformation above can explain the main differences
between Figure 6.6 and Figures 7.11 and 7.12, especially when it is
remembered that the triangular window plots like an exponential function

on log-linear axes.
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The generating interval was 5 sec, and with a mean wind speed éf
6.6 m sec—l this corresponds to a length of 33 m, and so after a lag
of 33 m the autocorrelation should drop to zero, which actually is
the case. For the real turbulence, the zero value is.reached around
600 m. With this knowledge, we would expect the generated turbulence
to look different from the turbulence recorded for the u and v components.

The cross—correlations agree well for lags less than 30 m, and it
is worth emphasizing the behavior of the important uw correlation. The
remarks on the autocorrelation can also be applied to the structure
function.

The u, v, and w spectra are plotted on the Figures 7.13 - 7.15 to-
gether with the turbulence spectra. The u and the v spectra fall off
like the turbulence spectra with a -5/3 slope for frequencies larger
than 1 Hz. Between 1 Hz and 0.03 Hz (scales 6.6 m to 330 m), the
epxerimental spectra exceed the turbulence spectra, and from 0.03 Hz
and less the opposite is true. We could have expected a pronounced
peak in the experimental spectra at 0.2 Hz due to the generation of the
turbulence in 5 sec pieces, but this is not the case:; the effect, 1f
any, has been spread over more than one decade of frequencies.

The w-spectra follow the same pattern, although they seem to
coincide much better except for high freqencies where the experimental
spectra fall off toolfast. This probably means that the eigenfunétions
from 21 and up still have some significant high frequency features to
add to w, but not to u and v.

The implication of the transformation 7.1 would be a folding of the
spectra with a (sin m/w)2 function, which except for some end effects

will tend to preserve power law behavior.
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The agreement between.the uw-cospectra in Figure 7.16 and those
in Figure 6.7 are very good.

The whole turbulence time history, block averaged from 10'Hz to
1 Hz, is displayed in Figure 6.8. The two experimental turbulence
records were normalized to have the same means, zero, and variances
as the turbuience record at 10 Hz and then block averaged to 1 Hz.

As 1is evident from the former discussion, the differences between
the two experiments are small, and we will therefore further on
confine our attention to experiment 1. Figure 7.17 shows 1000 sec .
of the experimental turbulence and as could be expected from the
discussion of the correlation functions and the spectra, the u and v
components have too much variation in the mid-frequency range, but
apparently none at low frequencies.

Figures 6.9 and 7.18 display 100 sec of the turbulence and the
experiment respectively, all data at 10 Hz and normalized with mean
zero and variance 1. As before, the w-components agree very weli and
80 do the u and v cbmponents at intervals less than 10 seconds. The
effect of patching the 5 sec intervals together is seen to cause some
excessive large jumps, a deficiency which has to be corrected, possibly

by establishing a patching procedure.

7.2 Spectral Shaping

In the final development of the model, some spectral shaping
seems unavoldable, first because of the problems of generating energy
at low wavenumbers, and secondly, because in practical applications
care must be exercised so that the energy is makimized at the appropriate

wavenumbers.
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Several methods exist, probably the'most.weilﬁknown being to
let the spectra match the behavior of the von Karman or the Dryden
spectrum (Smith, 1971, Fichtl, 1973)T Another approach is to use
the semi-empirical spectral formulae% obtained by the micrmeteorological
researchers (Busch, 1973).

The fair degree of coincidence ef the measured spectra aﬁd the
experimental spectra ledds us to the conclusion that in order to shape
thellow wavenumber end of the experimental spectral we could as well
shape them over the whole wavenumber range using the measured spectra.
This was accomplished in the following way:

Calculate the discrete Fourler transform for one component at a

time and let the series of Fourier coefficients be given by
ao’bo’al’bl""'aN’bN ¢ the measured turbulence

c d ,cl,d

0.9% d the generated turbulence
s

177 S, 9y

eo,fo,el,fl,....eN,fN t the generated and shaped turbulence

where

2 2.1/2
(ai + bi )

)
2 +d 2.1/2 i

(7.2) (ey-£) = Ic,
(ci

which gives



2 2 _ 2 2
(7.3) ey + fi = ay + bi
and
£, d,
S
e1 ci

so that we have changed the spectral shape of the generated turbulence
to that of the measured turbulence, but we have preserved the phase
angles from the generated series. The series (ei’fi) is then back
transformed to obtain the series in the time domain.

The effects of the shaping are shown for experiment 1 in
Figures 7.19 - 7.26. The autospectra and the autocorrelation are not
shown as they obviously have to be the same for the measured record
(the autocorrelation function approximately). The agreement between
the various statistical and sequential characteristics for the real
turbulence and the simulated turbulence are evident.

One desirable effect of the shaping is that it seemingly smooths
out the effect of patching the generated 5 seconds together, and thereby

relaxing the requirement for a patching procedure.

7.3 Summary Conclusions and Recommendations

In this sgudy several tasks were undertaken all with the primary
goal of producing an operational turbulence simulation model.

In Section 2, earlier attempts to use the Proper Orthogonal
Decomposition in turbulence modeling were reviewed and the conclusions
summarized in Table 1. The experience gained through these studies

suggested the development of the present model.
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Because the Proper Orthogonal Decomposition method eventually
has to extract information from one or more actual records, it was
argued in Section 3 that under some justifiable assumptions of
selfsimilarity and spectral power-laws, this does not 1imit the
generated turbulence to fixed length and timefscales.

The theory behind the Proper Orthogonal Decomposition and its
application in practice was briefly outlined in Section 4. The
argument for applying this theory in the model went as follows. From

earlier studies we know that it is essential to model the "surprise’

in turbulence. The proper Orthogonal Decomposition provides us with

a method to represent this phenomenon by a set of orthogonal functions
in which the first function has the closest resemblence in a least-
square sense to large gusts. The motion between these large gusts can
~also be represented by a set of orthogonal functions, which if provided
by the Proper Orthogonal Decomposition, give a unique optimal ex-
pansion of a stochastic process. Making the simplifying assumption
that the motion in the gust intervals consists of a gust structure plus
an orthogonal stochastic process allowed us to concentrate the

analysis to certain selected gust intervals.

The construction of ﬁhe model was described as a two part process,
first the analysis scheme to obtain the orthogonal functions, and
second, the generating scheme which uses these functions. The two
schemes were summarized at the end of Section 4.

The results of Fhe analysis scheme were discussed in Section 5 and an
investigation of the eigenfunctions revealed the first few to be a
mixture of gust structure and non-gust-motion with a decreasing emphasis
on the gust as the order of the eigenfunctions increases. The dis~

tribution of the expansion-coefficients were estimated to be Gaussian.
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The actual turbulence record was subjected to a fairly'detailed
analysis, reported in Section 6, in order to provide a set of statistics
for comparison with those of the generated turbulence. The calculated
statistics were compared with those obtained in other studies to ensure
the representativeness of the record. The statistics were chosen with
emphasis on the importance of the non-Gaussian behavior of turbulence
processes as well as the importance of the second order sequential
statistics.

Section 7 describes two experiments that were performed with
the model and compared the generated turbulence with the actual
turbulence. The analysis was performed twice before and after spectral
shaping. The main conclusions before the shaping were:

1. The two experiments differed no more than actual turbulence
records.

2. The non—-Gaussian behavior was well-modeled.

3. The sequentially dependent statistics and characteristics
were modeled well on time scales less than the length of the eigen-
functions.

4, The time history showed some excessive jumps due to patching
generated intervals together.

The spectral shaping was accomplished by transforming the gen-
erated turbulence into series with spectra equal to those of the actual
turbulence, and preserving the phase angles during the process. After
the spectral shaping, the experimental turbulence appeared to be as
close to real turbulence as any practical model might produce.

However, the model is not perfect and for future work we would

recommend that:
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1. More turbulence records be used in the analysis.

2. The length of the ensemble functions selected to determine
the eigenfunctions to be chosen with mofe considerations to the
integral scales of the process,

3. Several choices of the feature to be tested, for example
certain events in the uw and uvw correlations,

4. The probability density function and the time interval: be-
tween the events should be estimated properly from the turbulence
records,

5. The effects of preparing the selected ensemble in different
ways should be investigated,

6. The difficult choice of the transformation of the density-
functions for the first eigenfunctions could be eased by extending
the analysis so that two sets of eigenfunctions are calculated, one set
for the integrals with special features and one set for all other
intervals. Both sets could then be used in the generating scheme, or
they could be mixed, depending on an investigation of the similarities
between the two sets. This procedure would provide a test of whether
a characteristic feature exists in the chosen ensemble, because if the
two sets of eigenfunctions show close resemblance, this is clearly not
the case.

7. Alternative: gpectral shapings should be investigated.

The actual computer programs that generate the turbulence are
rather simple and not very time consuming, and so a lot of experiments
can easily be performed, in order to establish how the properties of
the generated turbulence vary with changes in the model. However, it is

a laborious task to make a thorough study of each experiment as can be
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judged from the number of figures in this report. A solution might
be to investigate just a few experiments with extreme variations in
the parameters, and then to test other experiments by applying the

generatéd turbulence in practice and judging the outcome.
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8.0. SOME CONSIDERATIONS ON USE .OF THE KARHUNEN-LOEVE
EXPANSION IN DATA ANALYSIS | |
Erik L. Petersen
The Proper Orfhogohal Decomposition Theorem has been used by an
increasing number of researchers in A variety of fields fo inQestigate
time or space series for quasi-deterministic structures. Aﬁong them
are Lorenz (1956), Lumley (1965), Dutton, et al. (1968), (1969), (1971),
Holstrédm (1970), Jasperson (1971), Busch and Petersep (1971), just to
mention a few.
Let us here be concerned with whether quasi-deterministic behavior
appears in the functions in {f(t)} where {f(t)} is an ensemble of second

order real valued random functions of the parameter -» < t < = and where

E {f(t)} =0
(8.1) E {£2(t)} =1
E {f(s)f(t)} = R(s,t)

Let {fT} be subensembles formed from {f} by assembling the sequential

values over intervals of length T of some functions fe{fl}. For example,

if

x| <%
(8.2) H(x) =

x| >3

then H(x+a)f(x) would be in one of the ensembles {fT} for every a. For
ease of computation, each function in {fT} is redefined over the domain

‘[0, TJ.
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If we suppose a qﬁasi—deterministic component'appears in {f},
then the question is how to select a criterion thaf will give a
functi;n $(t), 0 < t < T, that resembles the deterministic part of
the functions in an optimum manner.

Several measures of resemblance are possible; the one we will
choose is quadratic and has been discussed previously (Lumley,

1965, Dutton, 1969).

Let {fT} be one of the subensembles of {f}. Then we define

T 2
[JO f(r) ¢(t) dtl
T JT f2(t)dt JT ¢2(t)dt

(o] o

The function ¢ we are seeking maximizes A over the collection of all
subensembles {fT} for various values of T. Adopting other criteria

in order to determine the quasi-deterministic behavior given by ¢
would in general lead to other approaches, but it is the criterion
above that brings the Karhunen-Loeve expansion into the analysis. This
expansion known to have some very general properties, and this in turn
justifies the criterion.

The question whether there exists a unique solution to (8.4) such
that it is possible to find a subensemble'ET} determining a function ¢(t)
which gives an absolute maximum of A will be considered in the last
part of this section.

If a maximum is found, let {fT}* be the associated ensemble and let

{fT}— be constructed as

- *
{fT} = {fT} - {fT}
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which is to say that {fi}— are subensembles formed from {f} by
assembling sequential values over intervals of length T which have not
been used in the construction of.{fT}*.

We will now make the assumption that almost all the informa;ioﬁ
contained in {f} can be estimated from ¢(t) and'{fT}—. A necessary
but ndt a sufficient condition for this assumption to be true is
that R(s,t) does not differ significantly from zero outside Is—tl > T,
Let us further assume that we need a representation of the sequential
characteristics of'{fT}— which is as economical as possible. Sﬁch a
representation may be found by expanding {fT}— in complete orthogonal
systems, 1f it is possible to find an expansion that gives a good
approximation to the ensemble. functions by an economically small number
of terms.

The optimal expansion of a random function, the Karhunen-Loeve
expansion, is suitable for this purpose., The expansion is optimal
in the sense that the series truncated at any point minimizes the
integrated mean square deviation between the actual and. the approximated
random functions. Any other expansion using the same number of terms
cannot have an integrated mean square deviation which is less. This

is to say that minimizing the error e(N)

N
E{fe(M)} = E{Jlf(t) - I a ll)n(t)|2 de}

n=1
leads to an expansion (see e.g. Dutton, 1969)

=}

(8.4) £(t) = T o ¥ ()
o ke Yk
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where the functions used in this expansion wk(t), are the eigenfunctions

of the Fredholm integral equation

T
(8.5) J R(s,t) wk(t) dt = Ak wk(s)

(o}

and
(8.6) J b (£) Yo (t)de = le

(8.7) E {an am} = An Gnm

(8.8) o = J f(t) wn(t) dt

where the kn's have been arranged in a non-increasing sequence.

This follows from the Proper Orthogonal Decomposition Theorem,
Loeve (1955), which states that a mean-square continuous random
function f(t) defined on a closed interval 0 < t < T, has the
decomposition (8.4) with the properties given by (8.6), (8.7), and
(8.8) if and only if An are the eigenvalues and wn(t) the orthonormal
eigenfunctions belonginglto the correlation function R(s,t), and thus
are solutions to (8.5). The theory is based on Mercer's Theorem, which
states that a non-negative definite function, R(s,t) continuous over

the closed interval 0 < s,t < T has the expansion
8.9 = I *
8.9 Rle,t) = I ¥, () 4,7 (®)

where An and wn(t) are the solutions of (8.5) and the asterisk denotes

a complex conjugate.
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Solving the equations (8.5) - (8.8) gives us the Karhunen-Loeve
expanéion,.sometimes referred to as a generalized speétral représenq
tation because éf the lack of correlation between the coefficients
of expansion.

From the equations (8.7) and (8.8) we get

T
g {H £2(eyae} =

(o]

=

A
- n
n

which shows that the eigenvalues reveal the fraction of the total
variance which is explained by the associated eigenfunction.

Our problem now is to find {fT}*, and thereby {fT}— and ¢, by
solving the variational problem as given by (8.3). Unfortunately, we
are not able to do this in full generality. We cannot analytically
find the subensemble'{fT}* that maximizes A over all subensembles
{fT}; however, if by some other methods we can establish'{fT}* we can
solve (8.3) for the function ¢ which maximizes A over the ensemble
{fT}*. An approximate solution could be obtained by calculating A and
plotting it for various choices of'{fT},_ but the work involved is
staggering.

Let us then assume that we are able to select a subensemble
{fT} subjectively which is not far from the optimizing subensemble
if one exists.

Applying the techniques of the calculus of varitions to (8.3) to

find the maximizing function, ¢(t), leads to the integral equation;

J R(s,t) ¢, () dat = X ¢, (s)
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and we observe that the function most like each of fhe'functions in the
ensemble {fT} is determined by the Karhunen-Loeve expansion of {fi}, and
we have ¢(t) = ¢1(t). The expansion can be interpreted in the following
way: ¢1 is the single function that explains the most variance in the

ensemble, but it does not explain all of the variance, so we form a new

ensemble of functions {fT - a ¢l} and find the one function most like

1
the residual function; the answer will be ¢2 and so we consider a new

ensemble {fT - a - a ¢2} and so on.

1 ¢l 2
With the assumptions made through this section we are now able to
represent the sequential characteristics of {f} by the two orthonormal
systems, wk and ¢k, together with the sampling properties of the cor-
responding expansion coefficients.
The two systems can be reduced to one system if further assumptions
are made: if the quasideterministic structure we are seeking occurs

over the length T, and if this structure is orthogonal to the rest

of the process taking place over the length T, and if this structure is

given entirely by the first eigenfunction ¢1, then the ensemble

{£f,. - a; ¢1} will have the same properties as {fT}H hence y, will be

T
the same as ¢2, wz as ¢3 and so on. Such an assumption was made in the

construction of the model discussed in the preceding part

of this report.

But does there exist a unique solution to (8.3) such that it is
*
possible to find a subensemble {fT} determining a function ¢(t) which
gives an absolute maximum of A? An example will show that such an

ensemble does not exist in general.
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For the example we will use a stationary time series £(t) with the

oo]t-s]

correlation function R(s-t) = , @ > 0., This is the correlation

function for a first order autoregressive series.
f(t) = R(t=1) £(t-1) +e(t), t =0, 1, 2, ...

where e€(t) is normally distributed with E{e(t)} = 0 and

E{e(t) e(s)} = 6s,t 062. This form of a correlation function is

quite often a good approximation for geophysical time series despite

its lack of microscale, i.e., R(T) is not differentiable for T = O.

A very obvious reason for choosing R(t) is that it is then possible

to find an analytic solution to the Fredholm integral equation (8.5).
Let us first prove a theorem that often can be useful.
Theorem: The Karhunen-Loeve expansion of a stationary second-order

process yields eigenfunctions that are either odd .or even.

Proof: TFrom Mercer's Theorem, (8.9) we have

(8.10) R(s-t) = Z A ¢ (s) ¢ (t), 0 <s,t <T
n

which upon replacing s with T-s and t with T-t gives

(8.11)  R(-s#t) = L A_¢_ (T-s) ¢_ (T-t)
n

But R is an even function so that R(-s+t) = R(s~-t), and thus combining

(8.10) and (8.11) gives
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R(s=t) = T A~ ¢,(s) ¢ (£) = Z'ln ¢n(T45) ¢, (T-t)
n n
From the uniqueness of the KarhunenQLbeve"expanéiOn it then follows

immediately that for every 0 < t < T
¢n(t.), =+ ¢ (T-t)

so that the eigenfunctions are either odd or even with respect to the
point T/2. This concludes the proof.

Although the converse is not true because a set of odd or even
eigenfunctions only ensure that we have a correlation matrix symmetric
with respect to the two main diagonals, one could use the theorem with
care to estimate the non-stationarity of a certain ensemble. If, for

example, the eigenfunctions appear to be even or odd from the mth

eigenfunction on, and if the first m-1 eigenfunctions explain PZ of the

variance, then a reasonable hypothesis would be that approximately P%

of the variance in the ensemble could be due to instationarities.
Proceeding with the example, let us consider an ensemble over the

closed interval 0 < t < T with the following properties

E {TJ f(t) dt} =0
(o]
T
E {% I fz(t) dt} =1
[o]
T
E {% J f(t) f(t-1) dt} = e-alTl

o
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.The eigenfunctions of the correlation function are determined by

T _a|t-s]
I e ¢n(s)ds = An_¢n(t)

o

or, dropping the subscript n

T

. |
(8.12)  A¢(t) = j e 2(t8) 4 5yds +J e (57t 4 (gy4s

(o) t

Differentiating twice, using the rule for differentiating under the

integral sign, we have first

t T
AT (L) = - o J e (t8) 4 yds + o J o) yigyds
[o] t

“and then

-a(t-s) T e-a(s—t)

t .
Ap''(t) = az[J e ¢(s)ds + J ¢ (s)ds]~2a¢(t)
o

t
so that

' 2
o (e) + 22522 4y = 0

As a first case, we consider
20, - aZA 2

o 0™ r>g

The general solution to the differential equation is




262

$(t) = _Cleat + C.e

but it is easily seen that no coice of Cl, C2 can make ¢(t) either
odd or even over the interval (0, T) hence, no solutions exist for
A > 2/a.

As a second case, we have A < 2/a., The general solution is now

/ 2
¢(t) = G, cos(ut) + C, sin(wt), w = /.QE_Z;ELjﬁ

A

or

¢(t) = A sin(wt + 91)
which we can write as

#(t) = A sin ((t - ) + 0)

To determine A, w, 6 and A we have the integral equation, (8;12),

and the condition of orthogonality (8.6). After some algebra we find

(8.13)  ¢_(t) = /7:% sin (w_(t ~ 3) + 20

and the eigenvalue spectrum is given by

20,
a2+w2
n

(8.14) A



263

where the wnis are solutions to the equation

200w
(8.15) tan(wnT) = - 5 3
o - w
n
where
8.16) LT DT g0,

1 -
(8.17) FLA =1

Q

A variable C is introduced by

(8.18) C =aT (= —i—)

which is seen to be the ratio between the chosen length of the eigen~
functions and the integral scale.
Introducing C into (8.14) and (8,15) yields:

}\n
(8.19) ;i,—' =

2C
2 2
c + (mn T)
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2C (uun T)

(8.20) tan (wn T) = - cz S T)2
n

We can now numerically solve (8.17) ~ (8.20) to give An/T, n=
1, 2, ...., as a function of C. The result is shown on Figure 8.1
on a logarithmic scale.

As expected, it is not possible to find, in a statistical sense,
an ensemble {fT}* that gives an absolute maximum for Xl because
Al/T + 1 for T, C = O.

It is thus seen:that applying the Karhunen-Loeve expansion to a
certain selected ensemble and finding that the first eigenfunction
accounts for a tremendous amount of the variance does not automatically
ensure that a characteristic structure is revealed by the first eigen-
function.

Before we conclude this example, we will show an interesting
relationship, in this case, between the Fourier spectrum and the
eigenvalue spectrum.

The normalized Fourier spectrum of f(t) is given by

{vs]

(8.21)  S() = EJ 0Tt g 20
il ™ 2 2

o a” +w

and the normalized eigenvalue spectrum by
_ _2 o | (n—-1)7 nm
An B An(wn) T 2 2 ? T < “n < T
a +w n

and then all the eigenvalues are, except for a constant factor, lying

on the curve given by the Fourier spectrum,
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The mean value theorem gives

n
; -T2 _ o =2__ o (@m-1)7 ot
J SW =gy 55 F 7T, 2 T 1 T
a” + wy o + wy
T
_(“"1)'1‘
where w2'+ w, for T + «,
Two approximate formulas:
An 2 ' cr
-T—--*-T?,arc tan 7 5
CC+n@ml) =
for wl + mn
m A
. 2. mn
T B are tan —
n=1 T T . C

8.2 The Karhunen-Loeve Expansion of a Bandlimited White Noise Process

A slightly different approach for solving the integral equation (8.5)
with an exponential kernel can be found in Davenport and Ross (1958) and
Pugachev (1965) and (1959). In Slepian, Pollak, and Landau (1961) a
specially interesting case 1s analyzed where the timeseries is band-
limited white noise:

1/2 2, o] <@

Sw) =
0, Jof>0

Q
R(T) = f ;25 ST si?zTQT

-Q

The solutions to
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T/2.

sin Q(t-8)
j alt—s) $,(8) ds = 2 ¢ (t)

~T/2

are known as prolate spheroidal wave functions wn
¢,(t) =¥ (t5¢), c=QT

The eigenfunctions and the eigenvalues depend only on c or say

® * in Q 17
- = sin T =
I = J R(t) dt J o dt a3
o 0
= S &
c = QT > T

They depend as in the previous example only on the ratio between the

length of the ensemble function and the integral scale of the process.

8.3 Conclusion

The Karhunen-Loeve expansion (or the Proper Orthogonal Decomposition
or the Generalized Spectral Representation) has often proved to be a
powerful tool in mathematical—statiétical analysis of random processes
especially where advantages can be taken of the lack of correlation
between the expansion coefficients. However, the method is not without
disadvantages when compared witﬁ the usual Fourier analysis. One is
that the eigenfunctions have to be tabulated or plotted while sines and
cosines are well-known functi&ns. Another 1s that a physical interpre-
tation of the eigenvalue spectrum is often difficult, if possible, at all,

in contrast to Fourier spectra where the amount of explained variance
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~

is plotted versus frequency or wavenumber and hence makes direct
reference to time " or 1ength'scales in the process being studied.

Fourier analysis usually requires the process to be stationary

and ergodic wheréas the Proper Orthogonal Decomposition can be
applied to non-stationary ensembles. But in order to use the
latter method, it is necessary to establish an ensemble, and in the
process of doing so it is of the utmost importance to be sure that all
the ensemble functions included are equal members of the ensemble.
It is obvious that in order for the method to reveal a characteristic
structure in the enseﬁble, the ensemble functions have to be properly
aligned. If for example the structure is a sinusoid, there must be no
phaseshift from one ensemble function to another.

In this section we have outlined the theoretical basis for the
model which was developed in the preceding sections. We believe that
this basis can support further iﬁvestigations of the potential of the
Proper Orthogonal Decomposition in studying and modeling physical
processes. We have also pointed to the necessity of investigating the
statistical structure of the series being studied before it is decided
how to create the ensemble functions the method actually required as

input.
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